YEAR 5 (2019) MONITORING REPORT ABBEY LAMM STREAM AND WETLAND MITIGATION SITE

ALAMANCE COUNTY, NORTH CAROLINA FULL DELIVERY CONTRACT NO. 5790 DMS PROJECT NO. 96311 NCDWR PROJECT NO. 20140336 USACE ACTION ID NO. SAW-2014-01710

CAPE FEAR RIVER BASIN CATALOGING UNIT 03030002

Data Collection – March-November 2019

PREPARED FOR:

N.C. DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF MITIGATION SERVICES 1601 MAIL SERVICE CENTER RALEIGH, NORTH CAROLINA 27699-1601

Restoration Systems, LLC 1101 Haynes St. Suite 211 Raleigh, North Carolina Ph: (919) 755-9490 Fx: (919) 755-9492

January 14, 2020

Jeremiah Dow NC DEQ Division of Mitigation Services 217 West Jones St. Raleigh, NC 27699-1652

Subject: Draft Monitoring Year 5 Annual Monitoring Report

Abbey Lamm Stream and Wetland Mitigation Site (DMS #96311)

Cape Fear River Basin 03030002, Alamance County

Contract No. 005790

Mr. Dow,

Below is the response from Restoration Systems to all comments received on the Draft Abbey Lamm Yr. 5 (2019) monitoring report. DMS comments are in black, and our responses are in blue. Please do not hesitate to reach out if you would like to discuss.

Sincerely

Raymond Holz Restoration Systems

Faynel H.

Comments Received & Responses

1. Title Page

a. Please add the following:

i. DMS Project Number: 96311

ii. NCDWR Project Number: 20140336

iii. USACE Action ID Number: SAW-2014-01710

These items were added to the title page(s).

2. Section 2.3

a. Wetland Hydrology Gauge Table – Please shade the text red for gauge 6. Text for gauge 6 was shaded red.

b. The footnote below the Hydrology Gauge Table that states "# These gauges did not meet success criteria due to a data shuttle failure that resulted in the loss of data..." Please be more specific about what data was lost.

The statement was revised to read: "These gauges did not meet success criteria due to a data shuttle failure that resulted in the loss of data <u>from March 20 to May 3</u>. Based on rainfall and hydrology data that was not lost, these gauges would have likely met success criteria had the loss of data not occurred."

3. Section 2.4

a. 3rd Paragraph – Please change NCDWQ to NCDWR.
 This change was made.

4. Table 1

a. Change the column labeled "Restoration Linear Footage/Acreage" to indicate that these are Asbuilt quantities.

The column title was changed to "As-built Restoration Linear Footage/Acreage"

b. Add a column for mitigation plan linear footage/acreage.

A column was added titled "Mitigation Plan Linear Footage/Acreage."

c. Currently, the "Mitigation Credits" column is calculated from As-built numbers. Please update this column with mitigation plan credits.

The mitigation credits column was updated to match the mitigation plan credits. And the footnote that read, "NOTE: This table was revised after realizing that changes in stream footages due to minor changes in construction were not accounted for in the as-built document," was deleted.

5. Appendix B

a. Figure 2 – Please update the CCPV to differentiate between Restoration and Enhancement reaches.

Figure 2 was updated to differentiate between stream restoration and enhancement reaches.

6. Appendix D

a. On riffle cross sections, please show the current Low Top of Bank (LTOB) line and the adjusted bankfull line based on MYO cross sectional area. Additionally, please describe how BHR was calculated. For example, cross sections 8 and 12 appear to have aggraded since MYO, but the BHR is listed at 1.1 and 1.3 respectively. Based on the graph, one would expect to see a BHR of <1.

MYO LTOB lines were added to the cross-section graphs. The discrepancy in the BHR is due to the DMS BHR guidance changing during year 3 of the project. Rather than back calculating the first 3 data sets, DMS instructed us to fix the cross-sectional area starting in MY3 (not MY0). Therefore, the baseline data for the area best fit method of BHR calculations is actually MY3 rather than MY0.

b. On cross section 9 (and elsewhere) there is a footnote that reads "Elevated BHR results from shallow channel depth." Please explain in more detail what is meant by this.

The footnote was changed to the following in order to clarify: "No problems have been noted in this reach. Minor alterations in shallow channels may result in large discrepancies including elevated BHR."

7. Appendix E

a. Table 14 – See comment 2. Please shade the gauge that did not meet red, and elaborate on the footnote regarding data loss.

Gauge 6 was shaded red, and the footnote was revised as above to include "...from March 20 to May 3."

b. Please include the Groundwater Gauge graphs.

Groundwater gauge graphs have been included.

- 8. Digital data and drawings
 - a. (Related to Comment 6 above) DMS cannot currently replicate reported BHR's with the given data. Please ensure that bank height ratios (BHR) are calculated using the methods specified in the Industry Technical Work group memorandum. Please specify the Bankfull and LTOB elevations used for the BHR calculations in the excel sheets and further clarify how calculations were done in the footnote for morphology and hydrologic monitoring tables.
 - The BHR is calculated using the method specified in the Industry Technical Work Group memorandum (using a fixed cross-sectional area). However, this method was originally applied during MY3 of the project, so the MY3 cross-sectional area became the fixed area, rather than MY0. The bankfull and low bank height elevations used in the BHR calculations are listed in the table, and a footnote explains the 2 methods for BHR calculations used during the life of the project.
 - b. CVS entry tool is missing many plant vigor numbers. Please include these and resubmit. Also, please enter in the observation/sampling dates for MY5 plots.
 - We did not find any missing vigor data in the CVS database. The plants with "Missing" entered into the vigor column were unable to be located during MY5 monitoring. The plot observation/sampling dates were entered into the CVS database.

YEAR 5 (2019) MONITORING REPORT ABBEY LAMM STREAM AND WETLAND MITIGATION SITE

ALAMANCE COUNTY, NORTH CAROLINA FULL DELIVERY CONTRACT NO. 5790 DMS PROJECT NO. 96311 NCDWR PROJECT NO. 20140336 USACE ACTION ID NO. SAW-2014-01710

CAPE FEAR RIVER BASIN CATALOGING UNIT 03030002

Data Collection – March-November 2019

PREPARED BY:

RESTORATION SYSTEMS, LLC 1101 HAYNES STREET, SUITE 211 RALEIGH, NORTH CAROLINA 27604

AND

AXIOM ENVIRONMENTAL, INC. 218 SNOW AVENUE RALEIGH, NORTH CAROLINA 27603

January 2020

Table of Contents

1.0	PROJECT SUMMARY	
2.0	METHODOLOGY	
	2.1 Streams	
	2.2 Vegetation2.3 Wetland Hydrology	
	2.4 Biotic Community Change	
3.0	REFERENCES	
	Appendices	
APPI	ENDIX A. PROJECT BACKGROUND DATA AND MAPS	
	Figure 1. Vicinity Map	
	Table 1. Project Components and Mitigation Credits	
	Table 2. Project Activity and Reporting History	
	Table 3. Project Contacts Table	
	Table 4. Project Baseline Information and Attributes	
APPI	ENDIX B. VISUAL ASSESSMENT DATA	
	Figures 2. Current Conditions Plan View	
	Tables 5A-5E. Visual Stream Morphology Stability Assessment	
	Table 6. Vegetation Condition Assessment	
	Stream Fixed-Station Photographs	
APPI	ENDIX C. VEGETATION PLOT DATA	
	Tables 7. Supplemental Vegetation Transect Data	
	Table 8. CVS Vegetation Plot Metadata	
	Table 9. Total and Planted Stems by Plot and Species	
ΔPPI	ENDIX D. STREAM SURVEY DATA	
7 11 1 1	Table 10a-10e. Baseline Stream Data Summary	
	Table 11a-11l. Morphology and Hydraulic Summary Data	
APPI	ENDIX E. HYDROLOGY DATA	
	Tables 12a-12b. UT1 and UT3 Channel Evidence	
	Stream Gauge Graphs	
	Table 13. Verification of Bankfull Events	
	Groundwater Gauge Graphs	

APPENDIX F. BENTHIC DATA

Results

Habitat Assessment Data Sheets

Table 14. Groundwater Hydrology Data

APPENDIX G. MISCELLANOUS

Figure-2015 Fescue Treatment 2016 Herbicide Application Forms Supplemental Photographs Remedial Planting Plan Figure 2016 Replant Photos Herbicide Application Forms

1.0 PROJECT SUMMARY

The Abbey Lamm Stream and Wetland Mitigation Site (Site) encompasses approximately 17.3 acres located approximately 2.0 miles east of Snow Camp in southern Alamance County within 14-digit Cataloging Unit and Targeted Local Watershed 03030002050050 of the Cape Fear River Basin (Figure 1, Appendix B and Table 4, Appendix A). Prior to Site construction, the Site consisted of agricultural land used for livestock grazing and hay production. Streams had been cleared of vegetation, dredged of cobble substrate, trampled by livestock, eroded vertically and laterally, and received extensive sediment and nutrient inputs from livestock. In addition, streamside wetlands had been drained by channel incision, soils were compacted, cleared of forest vegetation, and altered by existing land uses. Completed project activities, reporting history, completion dates, project contacts, and project attributes are summarized in Tables 1-4 (Appendix A).

Positive aspects supporting mitigation activities at the Site included the following.

- Streams have a Best Usage Classification of WS-V, NSW (Nutrient Sensitive Waters)
- Located in a Targeted Local Watershed (TLW)
- According to the *Cape Fear River Basin Restoration Priorities 2009*, benthic ratings in the TLW vary from "Fair" to "Good-Fair" indicating a need for improvement of aquatic conditions in the watershed (NCDMS 2009)
- A Significant Natural Heritage Area is located immediately east of the Site

The Site is not included in a Local Watershed Plan; however, this project meets overall goals of the Local Watershed Plans including 1) reduce sediment loading, 2) reduce nutrient loading, 3) manage stormwater runoff, 4) reduce toxic inputs, 5) provide and improve instream habitat, 6) provide and improve terrestrial habitat, 7) improve stream stability, and 8) improve hydrologic function. The following table summarizes the project goals/objectives and proposed functional uplift based on Site restoration activities and observations of two reference areas located in the vicinity of the Site.

Project Goals and Objectives

Project Goal/Objective	How Goal/Objective will be Accomplished				
	Improve Hydrology				
Restore Floodplain Access	Building a new channel at the historic floodplain elevation to restore overbank flows				
Restore Wooded Riparian Buffer	Planting a woody riparian buffer				
Improve Microtopography	Scarifying soils to reduce compaction and hoof shear due to cattle				
Restore Stream Stability					
Increase Sediment Transport	Building a new channel, planting a woody riparian buffer, and removing cattle				
Improve Stream Geomorphology					
Increase Surface Storage and Retention	Building a new channel at the historic floodplain elevation restoring				
Restore Appropriate Inundation/Duration	overbank flows, removing cattle, scarifying compacted soils, and planting woody vegetation				
Increase Subsurface Storage and Retention	Raising the stream bed elevation				

Project Goals and Objectives (continued)

Project Goal/Objective		How Goal/Objective will be Accomplished						
	Improve Water Quality							
Increase Upland Pollutant Filtration	Planting a areas	native, woody riparian buffer and installing 8 marsh treatment						
Increase Thermoregulation	Planting a	native, woody riparian buffer						
Reduce Stressors and Sources of Pollution	Removing cattle and installing 8 marsh treatment areas							
Increase Removal and Retention of Pathogens, Particulates (Sediments), Dissolved Materials (Nutrients), and Toxins from the Water Column	woody veg	sing the stream bed elevation, restoring overbank flows, planting with ody vegetation, removing cattle, increasing surface storage and ention, restoring appropriate inundation/duration, and installing 8 rsh treatment areas						
Increase Energy Dissipation of Overbank/Overland Flows/Stormwater Runoff	_	e stream bed elevation, restoring overbank flows, planting with etation, and installing 8 marsh treatment areas						
	Restore	Habitat						
Restore In-stream Habitat	Building a riparian bu	stable channel with a cobble/gravel bed and planting a woody ffer						
Restore Stream-side Habitat	Planting a woody riparian buffer							
Improve Vegetation Composition and Structure								

Project construction occurred between January and April 2015. Planting was completed in April 2015. Site activities include the restoration of perennial and intermittent stream channels, enhancement (level II) of perennial and intermittent stream channels, and restoration of riparian wetlands. A total of **4734.6 Stream Mitigation Units (SMUs) and 1.0 Riparian Wetland Mitigation Units (WMUs)** are being offered as depicted in the following tables. These tables were revised after realizing that changes in stream footages due to minor changes in construction were not accounted for in the as-built document.

Stream Mitigation Type	Perennial Stream Counting Towards Mitigation Credits (linear feet) Intermittent Str Counting Towards Mitigation Credits (linear feet)		Ratio	Stream Mitigation Units
Restoration	2625	1775	1:1	4400
Enhancement (Level II)	409	425	2.5:1	333.6
Totals	3034	2200		4734.6

Wetland Mitigation Type	Acreage	Ratio	Riparian Wetland Mitigation Units
Riparian Restoration	1.0	1:1	1.0
Riparian Enhancement*	0.4		
Totals	1.4		1.0

^{*}Wetland enhancement acreage is not included in mitigation credit calculations as per RFP 16-005568 requirements.

Stream Success Criteria

Monitoring and success criteria for stream restoration should relate to project goals and objectives. From a mitigation perspective, several of the goals and objectives are assumed to be functionally elevated by restoration activities without direct measurement. Other goals and objectives will be considered successful upon achieving vegetation success criteria. The following summarizes stream success criteria related to goals and objectives.

Project Goal/Objective	Stream Success Criteria		
1	Improve Hydrology		
Restore Floodplain Access	Two overbank events will be documented, in separate years, during the monitoring period.		
Restore Wooded Riparian Buffer	Attaining Vegetation Success Criteria.		
Improve Microtopography	Removal of cattle and scarification of soils during construction.		
Restore Stream Stability	Cross-sections, monitored annually, will be compared to as-built measurements to determine channel stability and maintenance of		
Improve Stream Geomorphology	channel geomorphology.		
Increase Surface Storage and Retention	Removal of cattle, installation of 8 marsh treatment areas, scarification of soils during construction, documentation of two		
Restore Appropriate Inundation/Duration	overbank events in separate monitoring years, and attaining Wetland and Vegetation Success Criteria.		
Increase Subsurface Storage and Retention	Two overbank events will be documented, in separate years, during the monitoring period and attaining Wetland Success Criteria.		
Increase Sediment Transport	Pebble counts documenting coarsening of bed material from pre- existing conditions.		
In	prove Water Quality		
Increase Upland Pollutant Filtration	Installation of 8 marsh treatment areas and attaining Wetland and Vegetation Success Criteria		
Increase Thermoregulation	Attaining Vegetation Success Criteria		
Reduce Stressors and Sources of Pollution	Removal of cattle and installation of 8 marsh treatment areas		
Increase Removal and Retention of Pathogens, Particulates (Sediments), Dissolved Materials (Nutrients), and Toxins from the Water Column	Removal of cattle, installation of 8 marsh treatment areas, documentation of two overbank events in separate monitoring years, and attaining Vegetation Success Criteria		
Increase Energy Dissipation of Overbank/Overland Flows/Stormwater Runoff	Installation of 8 marsh treatment areas, documentation of two overbank events in separate monitoring years, and attaining Vegetation Success Criteria		
	Restore Habitat		
Restore In-stream Habitat	Reincorporating natural substrate removed from existing Site streams and stockpiled onsite into proposed stream beds, pebble counts documenting coarsening of bed material from pre-existing conditions, and attaining Vegetation Success Criteria (Section 8.3.1)		
Restore Stream-side Habitat	Attaining Vegetation Success Criteria		
Improve Vegetation Composition and Structure	Attaining Vegetation Success Criteria		

Intermittent channels (UT 1 and UT 3) were questioned by IRT members with respect to jurisdictional status. Success criteria in these reaches require surface water flow within the stream channels during years with normal climactic conditions for at least 30 consecutive days. Furthermore, IRT members require these systems to have a discernible ordinary high water mark, which will be evaluated and considered towards project success. Iron-oxidizing bacteria and hydric soils within these reaches will be documented by photograph throughout the monitoring period, and will be considered signs of intermittent channels by IRT members.

Vegetation Success Criteria

An average density of 320 planted stems per acre must be surviving in the first three monitoring years. Subsequently, 290 planted stems per acre must be surviving in year 4, 260 planted stems per acre in year 5, and 210 planted stems per acre in year 7. In addition, planted vegetation must average 10 feet in height in each plot at year 7 since this Site is located in the Piedmont. Volunteer stems may be considered on a case-by-case basis in determining overall vegetation success; however, volunteer stems should be counted separately from planted stems.

Wetland Success Criteria

Monitoring and success criteria for wetland restoration should relate to project goals and objectives. From a mitigation perspective, several of the goals and objectives are assumed to be functionally elevated by restoration activities without direct measurement. Other goals and objectives will be considered successful upon achieving vegetation success criteria. The following summarizes wetland success criteria related to goals and objectives.

Project Goal/Objective	Wetland Success Criteria		
Impr	ove Hydrology		
Restore Wooded Riparian Buffer	Attaining Vegetation Success Criteria.		
Improve Microtopography	Removal of cattle and scarification of soils during construction.		
Increase Surface Storage and Retention	Removal of cattle, scarification of soils during construction,		
Restore Appropriate Inundation/Duration	documentation of two overbank events in separate monitoring years, attaining Vegetation Success Criteria, and		
Increase Subsurface Storage and Retention	documentation of an elevated groundwater table (within 12 inches of the soil surface) for greater than 10 percent of the growing season during average climatic conditions.		
Improv	e Water Quality		
Increase Upland Pollutant Filtration	Installation of 8 marsh treatment areas and attaining Wetland and Vegetation Success Criteria.		
Reduce Stressors and Sources of Pollution	Removal of cattle and installation of 8 marsh treatment areas.		
Increase Removal and Retention of Pathogens, Particulates (Sediments), Dissolved Materials (Nutrients), and Toxins from the Water Column	Removal of cattle, installation of 8 marsh treatment areas, documentation of two overbank events in separate monitoring years, and attaining Vegetation Success Criteria.		
Increase Energy Dissipation of Overbank/Overland Flows/Stormwater Runoff	Installation of 8 marsh treatment areas, documentation of two overbank events in separate monitoring years, and attaining Vegetation Success Criteria.		
Res	tore Habitat		
Restore Stream-side Habitat	Attaining Vagatation Suggest Critaria		
Improve Vegetation Composition and Structure	Attaining Vegetation Success Criteria.		

According to the *Soil Survey of Alamance County*, the growing season for Alamance County is from April 17 – October 22 (USDA 1960). However, the start date for the growing season is not typical for the Piedmont region; therefore, for purposes of this project, gauge hydrologic success will be determined using data from February 1 - October 22 to more accurately represent the period of biological activity. Based on growing season information outlined in the Interim Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region (Environmental Laboratory 2012), this will be confirmed annually by soil temperatures exceeding 41 degrees Fahrenheit at 12 inches depth and/or bud burst.

Target hydrological characteristics include saturation or inundation for 10 percent of the monitored period (February 1-October 22), during average climatic conditions. During years with atypical climatic conditions, groundwater gauges in reference wetlands may dictate threshold hydrology success criteria (75 percent of reference). These areas are expected to support hydrophytic vegetation. If wetland parameters are marginal as indicated by vegetation and/or hydrology monitoring, a jurisdictional determination will be performed. The jurisdictional determination will not supersede monitoring data, or overturn a failure in meeting success criteria; however, this information may be used by the IRT, at the discretion of the IRT, to make a final determination on Site wetland re-establishment success.

Summary of Monitoring Period/Hydrology Success Criteria by Year

Year	Soil Temperatures/Date Bud Burst Documented	Monitoring Period Used for Determining Success	10 Percent of Monitoring Period
2015 (Year 1)		April 8*-October 22 (198 days)	20 days
2016 (Year 2)	Bud burst and soil temperatures documented on March 30, 2016	March 30-October 22 (207 days)	21 days
2017 (Year 3)	Bud burst and soil temperatures documented on February 28, 2017	February 28-October 22 (237 days)	24 days
Bud burst and soil temperatures documented on March 6, 2018		March 6-October 22 (231 days)	23 days
2019 (Year 5)	March 1, 2019**	March 1-October 22 (235 days)	24 days

^{*} Gauges were installed on April 8 during year 1 (2015), so this date was used as the start of the growing season.

Summary information/data related to the occurrence of items such as beaver or encroachment and statistics related to performance of various project and monitoring elements can be found in tables and figures within this report's appendices. Narrative background and supporting information formerly found in these reports can be found in the Baseline Monitoring Report (formerly Mitigation Plan) and in the Mitigation Plan (formerly the Restoration Plan) documents available on the NC Division of Mitigation Services (NCDMS) website. All raw data supporting the tables and figures in the appendices are available from NCDMS upon request.

2.0 METHODOLOGY

Monitoring requirements and success criteria outlined in the latest guidance by NCDMS dated November 7, 2011 (*Monitoring Requirements and Reporting Standards for Stream and/or Wetland Mitigation*) will be followed and are briefly outlined below. Monitoring data collected at the Site should include reference

^{**} Based on data collected from a soil temperature data logger located on the Site.

photos, plant survival analysis, channel stability analysis, and biological data, if specifically required by permit conditions.

Wetland hydrology is proposed to be monitored for a period of seven years (years 1-7). Riparian vegetation and stream morphology is proposed to be monitored for a period of seven years with measurements completed in years 1-3, year 5, and year 7. If monitoring demonstrates the Site is successful by year 5 and no concerns have been identified, Restoration Systems may propose to terminate monitoring at the Site and forego monitoring requirements for years 6 and 7. Early closure will only be provided through written approval from the USACE in consultation with the Interagency Review Team. Monitoring will be conducted by Axiom Environmental, Inc. Annual monitoring reports of the data collected will be submitted to the NCDMS by Restoration Systems no later than December 31 of each monitoring year data is collected.

2.1 Streams

Annual monitoring will include development of channel cross-sections and substrate on riffles and pools. Data to be presented in graphic and tabular format will include 1) cross-sectional area, 2) bankfull width, 3) average depth, 4) maximum depth, and 5) width-to-depth ratio. Post construction, permanently-monumented cross-sections were installed throughout the Site, at approximately 50 foot intervals. Sixty monitoring cross-sections will be measured annually. Cross-section locations are depicted on Figure 2 (Appendix B); data is included in Appendix D. Longitudinal profiles will not be measured routinely unless monitoring demonstrates channel bank or bed instability, in which case, longitudinal profiles may be required by the USACE along reaches of concern to track changes and demonstrate stability.

Visual assessment of in-stream structures will be conducted to determine if failure has occurred. Failure of a structure may be indicated by collapse of the structure, undermining of the structure, abandonment of the channel around the structure, and/or stream flow beneath the structure. In addition, visual assessments of the entire channel will be conducted in each of the seven years of monitoring as outlined in NCDMS *Monitoring Requirements and Reporting Standards for Stream and/or Wetland Mitigation*. Areas of concern will be depicted on a plan view figure identifying the location of concern along with a written assessment and photograph of the area. Morphology data can be found in Tables 8A-E and 9A-L (Appendix D).

Intermittent stream reaches, including UT 1 and UT 3, will receive priority 1 stream restoration to restore adjacent wetlands and elevate stream function. Priority 1 stream restoration along intermittent stream reaches was discussed by IRT members with regard to adequate base flow once stream restoration is complete. Therefore, stream flow gauges were installed in the upper and lower reaches of UT 1 and UT 3 to catalog flow for 30 consecutive days. Channel formation was evident in both UT 1 and UT 3 in years 1-5 (2015-2019) (Tables 10a-10b, Appendix E). The approximate location of stream flow gauges are depicted on Figure 2 (Appendix B); gauge data is included in Appendix E.

2.2 Vegetation

After planting was completed in April 2015, an initial evaluation was performed to verify planting methods and to determine initial species composition and density. Supplemental planting and additional Site modifications will be implemented, if necessary.

During quantitative vegetation sampling, 14 sample plots (10-meter by 10-meter) were installed within the Site as per guidelines established in *CVS-EEP Protocol for Recording Vegetation*, *Version 4.2* (Lee et al. 2008). In each sample plot, vegetation parameters to be monitored include species composition and species density. Visual observations of the percent cover of shrub and herbaceous species will also be documented by photograph.

Year 5 (2019) stem count measurements, taken in September 2019, indicate an average of 309 planted stems per acre (excluding livestakes) across the Site. Ten of fourteen individual vegetation plots met success criteria based on planted stems alone; however, when including naturally recruited stems of green ash

(Fraxinus pennsylvanica), black walnut (Juglans nigra), and river birch (Betula nigra), plots 7 and 13 are well above success criteria.

Heavy herbaceous competition in the first year (2015) growing season had affected planted stems; therefore, on March 10, 2016 open areas in the upper 2/3 of the Site were treated with a pre-emergent and grass specific herbicide (Appendix G). The treatment was successful in knocking back herbaceous growth; however, by the end of the growing season the amount of new herbaceous growth was similar to the density observed in prior to treatment efforts. RS does not plan to continue this form of treatment.

Working with Carolina Silvics, RS planted 1250 1-gallon pots during the week of December 20th, 2016, which included the following species: *Betula nigra, Fraxinus pennsylvanica, Platanus occidentalis, Quercus falcata, Quercus nigra, Quercus palustris, Quercus phellos,* and *Quercus rubra*. A remedial planting plan figure detailing location of planting and density, in addition to photographs, are provided in Appendix C. Of note, no remedial planting was performed within forested areas, i.e. vegetation plot 12. This is an enhancement area within an existing hardwood forest. Given planted species surviving within vegetation plot 12 and surrounding density of the existing forest, RS did not feel it was necessary to replant this area.

During year 5 (2019), it was observed that Japanese stiltgrass (*Microstegium vimineum*) densities were elevated within the old pond bed and were affecting planted stem survival. In June 2019, RS treated the microstegium with herbicide. Thus far, the treatment appears to have been successful in reducing the density of Japanese stiltgrass. The herbicide application form is in Appendix G.

2.3 Wetland Hydrology

Six groundwater monitoring gauges were installed to take measurements after hydrological modifications were performed at the Site. Groundwater gauges were installed in larger wetland sections along UT 1, UT 2, and the main stem channel. Gauges were installed at various elevations within the floodplain to accurately determine hydrology of wetland re-establishment areas. Approximate locations of wetland groundwater monitoring gauges are depicted on Figure 2 (Appendix D). Hydrological sampling will continue throughout the growing season at intervals necessary to satisfy jurisdictional hydrology success criteria (USEPA 1990). In addition, an on-site rain gauge will document rainfall data for comparison of groundwater conditions with extended drought conditions and floodplain crest gauges will confirm overbank flooding events.

	Success Criteria Achieved/Max Consecutive Days During Growing Season (Percentage)									
Gauge	ge February 1 March 30 Feb Growing Growing G		Year 3 (2017) February 28 Growing Season Start	Year 4 (2018) March 6 Growing Season Start	Year 5 (2019) March 1 Growing Season Start	Year 6 (2020)	Year 7 (2021)			
1	No*/10 days (3.8 percent)	Yes/75 days (36 percent)	No/12 days (5.1 percent)	Yes/68 days (29 percent)	Yes/28 days (11.9 percent)					
1B ⁺				Yes/60 days (26 percent)	Yes/60 days (26 percent)					
2	Yes/35 days (13.3 percent)	Yes/122 days (59 percent)	Yes/82 days (35 percent)	Yes/30 days (13 percent)	No/19 days# (8.1 percent)					
3	No*/14 days (5.3 percent)	Yes/48 days (23 percent)	Yes/135 days (57 percent)	Yes/66 days (29 percent)	Yes/89 days (38 percent)					
4	No*/14 days (5.3 percent)	Yes/100 days (48 percent)	Yes/78 days (33 percent)	Yes/28 days (12 percent)	No/18 days# (7.7 percent)					

5	Yes/32 days (12.1 percent)	Yes/75 days (36 percent)	Yes/48 days (20 percent)	Yes/60 days (26 percent)	No/19 days# (8.1 percent)	
6	No*/9 days (3.4 percent)	No/7 days (3.4 percent)	No/5 days (2.1 percent)	Yes/25 days (11 percent)	No/19 days (8.1 percent)	
$6\mathrm{B}^{\scriptscriptstyle +}$				Yes/28 days (12 percent)	No/17 days [#] (7.2 percent)	
7**		Yes/116 days (56 percent)	Yes/153 days (65 percent)	Yes/103 days (45 percent)	Yes/103 days (44 percent)	
8**		Yes/206 days (100 percent)	Yes/211 days (89 percent)	Yes/231 days (100 percent)	Yes/124 days (53 percent)	
9**		Yes/54 days (26 percent)	No^/12 days (5.1 percent)	Yes/132 days (57 percent)	Yes/122 days (52 percent)	

^{*} Due to Site construction activities, groundwater gauges were not installed until April 8, 2015. It is expected that all gauges would meet success criteria at the beginning of the growing season.

2.4 Biotic Community Change

Changes in the biotic community are anticipated from a shift in habitat opportunities as tributaries are restored. In-stream, biological monitoring is proposed to track the changes during the monitoring period. The benthic macroinvertebrate community will be sampled using NCDWR protocols found in the *Standard Operating Procedures for Benthic Macroinvertebrates* (NCDWQ 2006) and *Benthic Macroinvertebrate Protocols for Compensatory Stream Restoration Projects* (NCDWQ 2001). Biological sampling of benthic macroinvertebrates will be used to compare preconstruction baseline data with postconstruction restored conditions.

Two benthic macroinvertebrate monitoring locations will be established within restoration reaches. Postrestoration collections will occur in the approximate location of the prerestoration sampling. Benthic macroinvertebrate samples will be collected from individual reaches using the Qual-4 collection method. Sampling techniques of the Qual-4 collection method consist of kick nets, sweep nets, leaf packs, and visual searches. Preproject biological sampling occurred on June 26, 2014; postproject monitoring will occur in June of monitoring years 2-5.

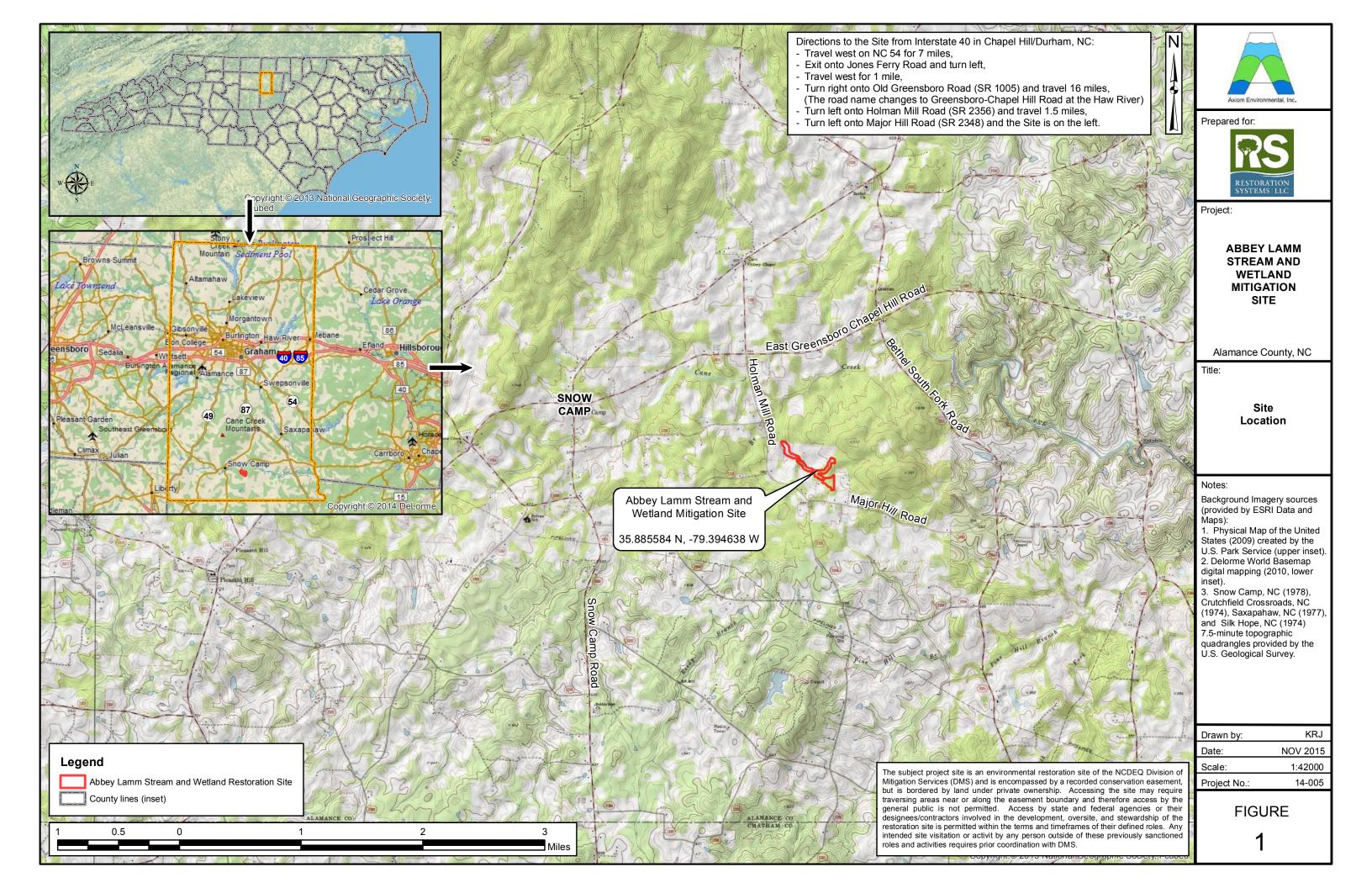
Identification of collected organisms will be performed by personnel with North Carolina Division of Water Resources (NCDWR) or by a NCDWR certified laboratory. Other data collected will include D50 values/NCDWR habitat assessment forms. Biological sampling for year 5 (2019) occurred on June 13, 2019. The samples were sent to Pennington and Associates, a NCDWQ certified laboratory, for identification and analysis. The results and Habitat Assessment Dataforms are included in Appendix F.

^{**} These gauges were installed on March 8, 2016 to show wetland establishment within the old pond bed.

[^] This gauge malfunctioned through the majority of the growing season due to continuous inundation. It is expected that this gauge would have met success criteria had it functioned properly.

⁺ These gauges were installed during Year 4 (2018) in close proximity with two gauges that had not met success criteria in previous monitoring years in order to verify the groundwater data at these locations.

[#] These gauges did not meet success criteria due to a data shuttle failure that resulted in the loss of data from March 20 to May 3. Based on rainfall and hydrology data that was not lost, these gauges would have likely met success criteria had the loss of data not occurred.


3.0 REFERENCES

- Environmental Laboratory. 1987. Corps of Engineers Wetlands Delineation Manual. Technical Report Y-87-1. United States Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.
- Environmental Laboratory. 2012. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region (Version 2.0). United States Army Engineer Research and Development Station, Vicksburg, Mississippi.
- Lee, M.T., R.K. Peet, S.D. Roberts, and T.R. Wentworth. 2008. CVS-EEP Protocol for Recording Vegetation. Version 4.2. North Carolina Department of Environment and Natural Resources, Ecosystem Enhancement Program. Raleigh, North Carolina.
- North Carolina Division of Water Quality (NCDWQ). 2001. Benthic Macroinvertebrate Monitoring Protocols for Compensatory Mitigation. 401/Wetlands Unit, Department of Environment and Natural Resources. Raleigh, North Carolina.
- North Carolina Division of Water Quality (NCDWQ). 2006. Standard Operating Procedures for Benthic Macroinvertebrates. Biological Assessment Unit, North Carolina Department of Environment and Natural Resources. Raleigh, North Carolina.
- North Carolina Division of Mitigation Services (NCDMS 2009). Cape Fear River Basin Restoration Priorities 2009 (online). Available: http://portal.ncdenr.org/c/document_library/get_file?uuid= 864e82e8-725c-415e-8ed9-c72dfcb55012&groupId=60329
- Schafale, M.P. and A.S. Weakley. 1990. Classification of the Natural Communities of North Carolina: Third Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, North Carolina Department of Environment, Health, and Natural Resources. Raleigh, North Carolina.
- United States Department of Agriculture (USDA). 1960. Soil Survey of Alamance County, North Carolina. Soil Conservation Service.
- United States Environmental Protection Agency (USEPA). 1990. Mitigation Site Type Classification (MiST). EPA Workshop, August 13-15, 1989. EPA Region IV and Hardwood Research Cooperative, NCSU, Raleigh, North Carolina.

APPENDIX A

PROJECT BACKGROUND DATA AND MAPS

- Figure 1. Vicinity Map
- Table 1. Project Components and Mitigation Credits
- Table 2. Project Activity and Reporting History
- Table 3. Project Contacts Table
- Table 4. Project Baseline Information and Attributes

Table 1. Project Components and Mitigation Credits

Mitigation Credits								
Stream	Strean	1		Riparian Wetlan	d		Nonri	parian Wetland
Restoration	Enhancen	ient	Restoration			Restoration		
4400	331			1.0				
				Projects Compone	ents			
Station Range	Existing Linear Footage/ Acreage	Priority Approach	Restoration Restoration Equivalent	Restoration	Mitigation Plan Restoration Linear Footage/ Acreage	Mitigation Ratio	Mitigation Credits (from Mit Plan)	Comment
UT 1 Station 00+21 to 05+62	531	PI	Restoration	546	541	1:1	546	
UT 1a Station 00+00 to 01+54	154	PI	Restoration	154-9=145	154-8= 146	1:1	145	9 If of UT1a located outside of easement is not credit generating
UT 2 Station 00+22 to 04+75	502	PI	Restoration	453	455	1:1	453	
UT 3a Station 00+00 to 00+93	93		EII	93	93	2.5:1	37.2	
UT 3b Station 00+00 to 01+42	143		EII	142	143	2.5:1	56.8	
UT 3c Station 00+00 to 01+90	190		EII	190	190	2.5:1	76	
UT 3 Station 00+93 to 11+77	1021	PI	Restoration	1084	1084	1:1	1084	
Mainstem Channel Station 04+75 to 16+29	1098	PI	Restoration	1154-61-63= 1030	1154-61-63= 1030	1:1	1030	61 If and 63 If of Mainstem located outside of easement at two crossings are not credit generating
Mainstem Channel Station 16+29 to 20+57	428		EII	428-19=409	428-25=403	2.5:1	163.6	19 If of Mainstem located outside of easement are not credit generating
Mainstem Channel Station 20+57 to 32+57	NA	PI	Restoration	1201-57=1142	1199-55=1144	1:1	1143	57 If of Mainstem located outside of easement are not credit generating
				Component Summ	ation			
Restoration Level	Stream (l	inear footage	e)	Riparian Wetlan	nd (acreage)		Nonriparia	n Wetland (acreage)
Restoration	4	1400*		1.0		-		
Enhancement (Level 1)								
Enhancement (Level II)	8	329**						
Enhancement				0.4***				
Totals		5229						
Mitigation Units		1 SMUs		1.0 Riparian				nriparian WMUs

^{*}An additional 190 linear feet of stream restoration is proposed outside of the easement and is therefore not included in this total or in mitigation credit calculations.

^{**}An additional 19 linear feet of stream enhancement (level II) is proposed outside of the easement and is therefore not included in this total or in mitigation credit calculations.

^{***}Wetland enhancement acreage is not included in mitigation credit calculations as per RFP 16-005568 requirements.

Table 2. Project Activity and Reporting History

Activity or Deliverable	Stream Monitoring Complete	Vegetation Monitoring Complete	Data Collection Complete	Completion or Delivery
Technical Proposal (RFP No. 16-005568)				October 2013
EEP Contract No. 5790				February 2014
Mitigation Plan				September 2014
Construction Plans				September 2014
Construction Earthwork	-			April 3, 2015
Planting				April 7, 2015
As-Built Documentation	April 14, 2015	April 9, 2015	May 2015	July 2015
Year 1 Monitoring	October 20, 2015	September 23, 2015	October 2015	November 2015
Fescue Treatment				March, 2016
Year 2 Monitoring	April 7, 2016	July 6, 2016	October 2016	December 2016
Remedial Planting	-			December 8, 2016
Year 3 Monitoring	March 27, 2017	July 19, 2017	October 2017	November 2017
Year 4 Monitoring	April 15, 2018		October 2018	October 2018
Year 5 Monitoring	March 4, 2019	September 25, 2019	November, 2019	January 2020

Table 3. Project Contacts Table

Full Delivery Provider	Construction Contractor
Restoration Systems	Land Mechanic Designs
1101 Haynes Street, Suite 211	780 Landmark Road
Raleigh, North Carolina 27604	Willow Spring, NC 27592
Worth Creech 919-755-9490	Lloyd Glover 919-639-6132
Designer	Planting Contractor
Axiom Environmental, Inc.	Carolina Silvics, Inc.
218 Snow Avenue	908 Indian Trail Road
Raleigh, NC 27603	Edenton, NC 27932
Grant Lewis 919-215-1693	Mary-Margaret McKinney 252-482-8491
Construction Plans and Sediment and	As-built Surveyor
Erosion Control Plans	K2 Design Group
Sungate Design Group, PA	5688 US Highway 70 East
915 Jones Franklin Road	Goldsboro, NC 27534
Raleigh, NC 27606	John Rudolph 919-751-0075
Joshua G. Dalton, PE 919-859-2243	
	Baseline & Monitoring Data Collection
	Axiom Environmental, Inc.
	218 Snow Avenue
	Raleigh, NC 27603
	Grant Lewis 919-215-1693

Table 4. Project Attribute Table											
Project I	nformation										
Project Name	Abbe	y Lamm Restora	ation Site								
Project County	Alamar	ice County, Nor	th Carolina								
Project Area (acres)	17.3										
Project Coordinates (latitude & latitude)	35.8	35.885584°N, 79.394638°W									
Project Watershed	Summary Informa	tion									
Physiographic Province		Piedmont									
Project River Basin		Cape Fear									
USGS HUC for Project (14-digit)		030300020500	50								
NCDWR Sub-basin for Project		03-06-04									
Project Drainage Area (acres)		257									
Percentage of Project Drainage Area that is Impervious		<2%									
Reach Summ	ary Information										
Parameters	Main	UT 1	UT 2	UT 3							
Length of reach (linear feet)	3258	3258 695 455 15									
Valley Classification		alluvia	al								
Drainage Area (acres)	257	257 49 56									
NCDWR Stream ID Score		29 35.25 28									
NCDWR Water Quality Classification		WS-V, N	ISW								
Existing Morphological Description (Rosgen 1996)	Eg5/Fc5	E/G 5	C/G 5	Eg5							
Existing Evolutionary Stage (Simon and Hupp 1986)	III/IV	II/III	IV/III	III							
Underlying Mapped Soils		m, Goldston sla lerately gullied l	•								
Drainage Class		well-drained, we		-							
Hydric Soil Status		Nonhyd	Iric								
Slope	0.0179 0.0256-0.0362										
FEMA Classification	NA										
Native Vegetation Community	Piedmont Alluvial Forest/Dry-Mesic Oak-Hickory Forest										
Watershed Land Use/Land Cover (Site)	40% forest, 58% agricultural land, <2% low density residential/impervious surface										
Watershed Land Use/Land Cover (Cedarock Reference Channel)		30% agricultura esidential/imperv		w density							
Percent Composition of Exotic Invasive Vegetation	<5%										

APPENDIX B

VISUAL ASSESSMENT DATA

Figure 2. Current Conditions Plan View (CCPV)

Tables 5A-5E. Visual Stream Morphology Stability Assessment

Table 6. Vegetation Condition Assessment

Stream Station Photographs

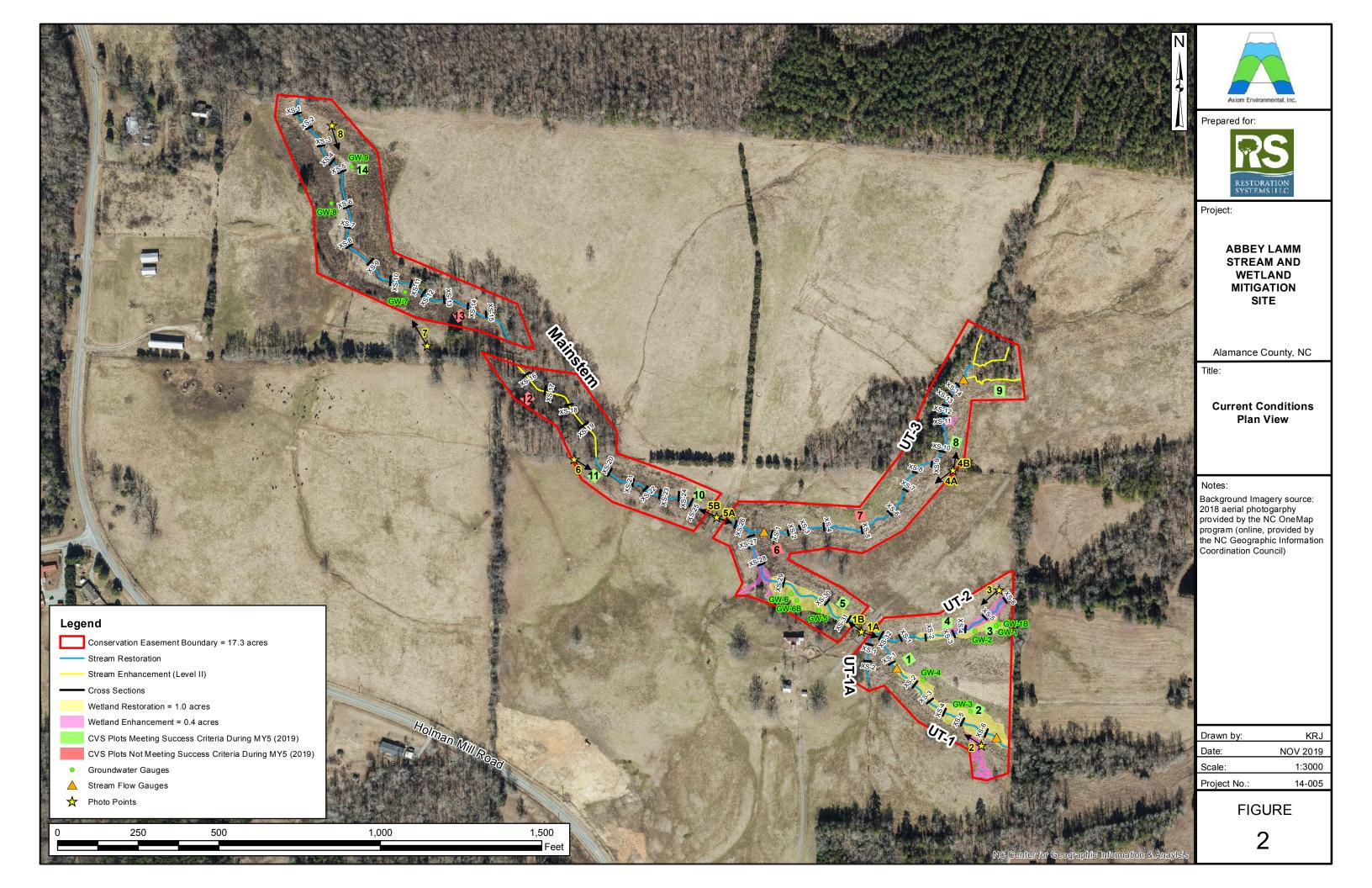


Table 5A <u>Visual Stream Morphology Stability Assessment</u>
Reach ID Lamm Mainstem
Assessed Length 2781

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	56	56			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	55	55			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	55	55			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	55	55			100%			
		Thalweg centering at downstream of meander (Glide)	55	55			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	14	14			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	14	14			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	14	14			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	14	14			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	14	14			100%			

Table 5B Reach ID Assessed Length Visual Stream Morphology Stability Assessment

Lamm UT1-A 154

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	<u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		Degradation - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	6	6			100%	1		
	3. Meander Pool Condition	1. Depth Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	5	5			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	5	5			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	5	5			100%			
		Thalweg centering at downstream of meander (Glide)	5	5			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	4	4			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	4	4			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	4	4			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	4	4			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	4	4			100%			

Table 5C <u>Visual Stream Morphology Stability Assessment</u>
Reach ID Lamm UT1
Assessed Length 541

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation														
1. Bed	Vertical Stability (Riffle and Run units)	<u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%																	
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%																	
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	25	25			100%																	
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	24	24			100%																	
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	24	24			100%																	
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	24	24	1		100%	1																
		Thalweg centering at downstream of meander (Glide)	24	24			100%																	
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%														
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%														
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%														
				Totals	0	0	100%	0	0	100%														
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	10	10			100%																	
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	10	10																	100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	10	10			100%																	
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	10 10				100%																	
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	10	10			100%																	

Table 5D Reach ID Assessed Length Visual Stream Morphology Stability Assessment

Lamm UT2 455

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	<u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	23	23			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	22	22			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	22	22			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	22	22			100%			
		Thalweg centering at downstream of meander (Glide)	22	22			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	12	12			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	12	12			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	12	12			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	1 12 12				100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	12	12			100%			

Table 5E <u>Visual Stream Morphology Stability Assessment</u>

Reach ID Assessed Length

UT3 1084

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	<u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	38	38			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	37	37			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	37	37			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	37	37			100%	1		
		Thalweg centering at downstream of meander (Glide)	37	37			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	23	23			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	23	23			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	23	23			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)		23			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	23	23			100%			

Table 6

Vegetation Condition Assessment

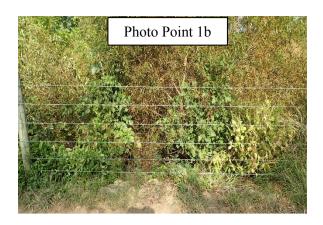
Abbey Lamm

Planted Acreage¹

16.4

Tiditica Aoreage						
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
1. Bare Areas	None	0.1 acres	none	0	0.00	0.0%
2. Low Stem Density Areas	None	0.1 acres	none	0	0.00	0.0%
2B. Low Planted Stem Density Areas	None	0.1 acres	none	0	0.00	0.0%
			Total	0	0.00	0.0%
3. Areas of Poor Growth Rates or Vigor	None	0.25 acres	none	0	0.00	0.0%
	mulative Total	0	0.00	0.0%		

Easement Acreage²

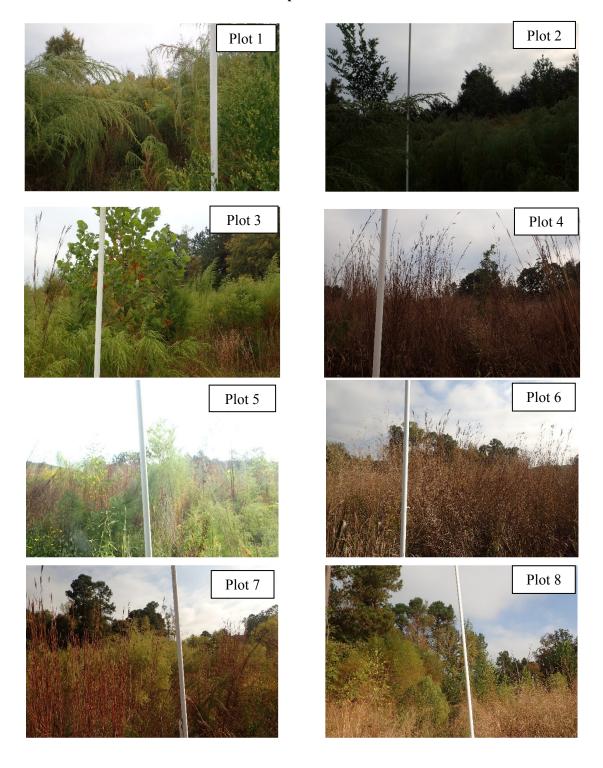

17.3

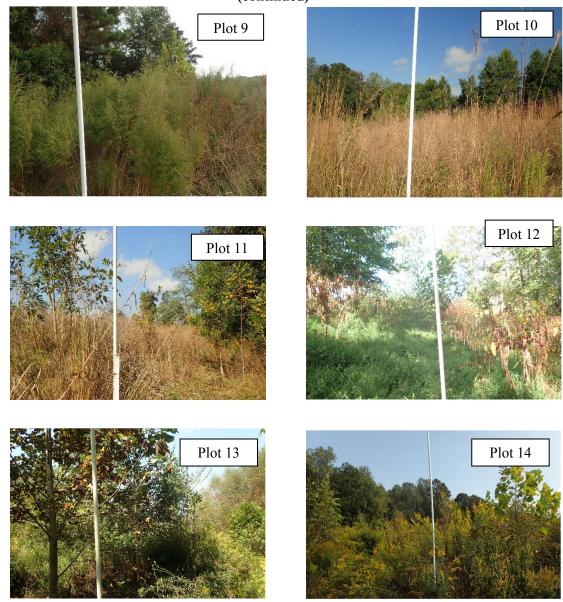
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
4. Invasive Areas of Concern ⁴	None	1000 SF	none	0	0.00	0.0%
5. Easement Encroachment Areas ³	None	none	none	0	0.00	0.0%

- 1 = Enter the planted acreage within the easement. This number is calculated as the easement acreage minus any existing mature tree stands that were not subject to supplemental planting of the understory, the channel acreage, crossings or any other elements not directly planted as part of the project effort.
- 2 = The acreage within the easement boundaries.
- 3 = Encroachment may occur within or outside of planted areas and will therefore be calculated against the overall easement acreage. In the event a polygon is cataloged into items 1, 2 or 3 in the table and is the result of encroachment, the associated acreage should be tallied in the relevant item (i.e., item 1,2 or 3) as well as a parallel tally in item 5.
- 4 = Invasives may occur in or out of planted areas, but still within the easement and will therefore be calculated against the overall easement acreage. Invasives of concern/interest are listed below. The list of high concern spoies are those with the potential to directly outcompete native, young, woody stems in the short-term (e.g. monitoring period or shortly thereafter) or affect the community structure for existing, more established tree/shrub stands over timeframes that are slightly longer (e.g. 1-2 decades). The low/moderate concern group are those species that generally do not have this capacity over the timeframes discussed and therefore are not expected to be mapped with regularity, but can be mapped, if in the judgement of the observer their coverage, density or distribution is suppressing the viability, density, or growth of planted woody stems. Decisions as to whether remediation will be needed are based on the integration of risk factors by DMS such as species present, their coverage, distribution relative to native biomass, and the practicality of treatment. For example, even modest amounts of Kudzu or Japanese Knotweed early in the projects history will warrant control, but potentially large coverages of Microstegium in the herb layer will not likley trigger control because of the limited capacities to impact tree/shrub layers within the timeframes discussed and the potential impacts of treating extensive amounts of ground cover. Those species with the "watch list" designator in gray shade are of interest as well, but have yet to be observed across the state with any frequency. Those in red italics are of particular interest given their extreme risk/threat level for mapping as points where isolated specimens are found, particularly ealry in a projects monitoring history. However, areas of discreet, dense patches will of course be mapped as polygons. The symbology scheme below was one that was found to be helpful for symbolzing invasives polygons, particularly for situations where the condition f

Abbey Lamm Year 5 Fixed Station Photographs Taken October 2019

Abbey Lamm Year 5 Fixed Station Photographs (continued) Taken September 2019





Abbey Lamm Year 5 Vegetation Monitoring Photographs Taken September 2019

Abbey Lamm Year 5 Vegetation Monitoring Photographs Taken September 2019 (continued)

APPENDIX C

VEGETATION PLOT DATA

- Table 7. Vegetation Plot Criteria Attainment
- Table 8. CVS Vegetation Plot Metadata
- Table 9. Total and Planted Stems by Plot and Species

Table 7. Vegetation Plot Criteria Attainment Based on Planted Stems

Vegetation Plot ID	Vegetation Survival Threshold Met?	MY 5 (2019) Planted Stems	MY 5 (2019) All Stems	Tract Mean
1	Yes	283	445	
2	Yes	526	768	
3	Yes	445	607	
4	Yes	323	526	
5	Yes	283	849	
6	Threshold Met? Planted Stems Yes 283 Yes 526 Yes 445 Yes 323	202		
7	No	202	930	71.40/
8	Yes Yes Yes Yes Yes Yes Yes No No No Yes	566	1214	71.4%
9		323	1093	
10	Yes	283	323	
11	Yes	283	485	
12	Threshold Met? I Yes Yes Yes Yes No No No Yes Yes Yes Yes Yes No No No No Yes Yes	80	80	
13	No	242	323	
14	Yes	283	323	
	Totals =	309	583	

Table 8. CVS Vegetation Plot Metadata

Report Prepared By	Corri Faquin
Date Prepared	9/26/2019 15:02
database name	RS-Lamm-2017-A-v2.3.1.mdb
database location	S:\Business\Projects\14\14-005 Abby Lamm Detailed\2019 Year 5 Monitoring\CVS
computer name	PHILLIP-LT
file size	56627200
DESCRIPTION OF WO	ORKSHEETS IN THIS DOCUMENT
Metadata	Description of database file, the report worksheets, and a summary of project(s) and project data.
Proj, planted	Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.
Proj, total stems	Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all natural/volunteer stems.
Plots	List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).
Vigor	Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
Planted Stems by Plot and Spp	A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are excluded.
ALL Stems by Plot and spp	A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead and missing stems are excluded.
PROJECT SUMMARY	
Project Code	14.005
project Name	Lamm
River Basin	Cape Fear
Sampled Plots	14

Table 9. Planted and Total Stems
Project Code 14.005. Project Name: Lamm

			Current Plot Data (MY5 2019)																													
			14.005-A	XE-00	01	14.00	5-AXE-	0002	14.0	05-AXE	-0003	14.0	05-AXE	-0004	14.0	05-AXE	-0005	14.00)5-AXE-	-0006	14.00)5-AXE	-0007	14.0	05-AXE	-0008	14.00	05-AXE-	-0009	14.00	05-AXE-0	010
Scientific Name	Common Name	Species Type	PnoLS P-a	II T	Pr	noLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all T										
Acer rubrum	red maple	Tree																														
Baccharis halimifolia	eastern baccharis	Shrub			1						1															3						
Betula nigra	river birch	Tree	2	2	2				1	1	1	1	1	1				1	1	1				2	2	2	1	1	1			
Carpinus caroliniana	American hornbeam	Tree													1	1	1															
Carya	hickory	Tree						2																								
Celtis	hackberry	Tree																														
Celtis laevigata	sugarberry	Tree																														
Cephalanthus occidentalis	common buttonbush	Shrub																														
Cornus amomum	silky dogwood	Shrub				1	1	1	3	3	3				1	1	1							6	6	6				1	1	1
Diospyros	diospyros	Tree																														
Diospyros virginiana	common persimmon	Tree						1			1	1	1	3				1	1	1										1	1	1
Fraxinus pennsylvanica	green ash	Tree			1	6	6	6	6	6	8			3	2	2	13						18	6	6	8			2	4	4	4
Juglans	walnut	Tree													1	1	1															
Juglans nigra	black walnut	Tree															1														7	1
Liquidambar	sweetgum	Tree																														
Liquidambar styraciflua	sweetgum	Tree			2			3																		7			9			
Liriodendron tulipifera	tuliptree	Tree				4	4	4									2										1	1	1			
Nyssa	tupelo	Tree	3	3	3	2	2	2																								
Nyssa aquatica	water tupelo	Tree																														
Nyssa sylvatica	blackgum	Tree													1	1	1															
Pinus taeda	loblolly pine	Tree																								1			3			
Platanus occidentalis	American sycamore	Tree							1	1	1	2	2	2				1	1	1	2	2	2				1	1	1			
Quercus	oak	Tree																														
Quercus alba	white oak	Tree										1	1	1	1	1	1				1	1	1				1	1	1	1	1	1
Quercus nigra	water oak	Tree										2	2	2				1	1	1							2	2	2			
Quercus pagoda	cherrybark oak	Tree																														
Quercus phellos	willow oak	Tree	2	2	2							1	1	1							2	2	2				2	2	2			
Quercus rubra	northern red oak	Tree																1	1	1												
Ulmus americana	American elm	Tree																											5			
Ulmus rubra	slippery elm	Tree																								3						
Unknown		Shrub or Tree																														
		Stem count	7	7	11	13	13	19	11	11	15	8	8	13	7	7	21	. 5	5	5	5	5	23	14	14	30	8	8	27	7	7	8
		size (ares)	1				1			1			1			1			1			1			1			1			1	
		size (ACRES)	0.0)2			0.02			0.02			0.02			0.02			0.02			0.02			0.02			0.02			0.02	
		Species count	3	3	6	4	4	7	4	4	6	6	6	7	6	6	8	5	5	5	3	3	4	3	3	7	6	6	10	4	4	5
	s	Stems per ACRE	283.3 28	3.3 4	45.2 5	526.1	526.1	768.9	445.2	445.2	607	323.7	323.7	526.1	283.3	283.3	849.8	202.3	202.3	202.3	202.3	202.3	930.8	566.6	566.6	1214	323.7	323.7	1093	283.3	283.3	323.7

Color for Density

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

PnoLS = Planted excluding livestakes P-all = Planting including livestakes

T = All planted and natural recruits including livestakes

T includes natural recruits

Table 9. Planted and Total Stems (continued)
Project Code 14.005. Project Name: Lamm

						(Curren	t Plot D	ata (M\	/5 201 9)										Anı	nual Me	eans						
			14.0	05-AXE	-0011	14.00	05-AXE	-0012	14.0	05-AXE	-0013	14.0	05-AXE	-0014	М	Y5 (20:	19)	M	Y3 (201	7)	M	IY2 (20:	16)	M	Y1 (201	L 5)	M	/0 (2015)	
Scientific Name	Common Name	Species Type	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	Т	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all T	
Acer rubrum	red maple	Tree												1			1			1									
Baccharis halimifolia	eastern baccharis	Shrub															5												
Betula nigra	river birch	Tree									1	1	1 1	. 1	. 9	9	10	10	10	10	6	6	6	9	9	9	14	14	14
Carpinus caroliniana	American hornbeam	Tree													1	1	1	. 2	2	2	1	1	1	_			5	5	5
Carya	hickory	Tree															2						3	į.		1			
Celtis	hackberry	Tree																		1									
Celtis laevigata	sugarberry	Tree																						1	1	1	7	7	7
Cephalanthus occidentalis	common buttonbush	Shrub																						5	5	5	7	7	7
Cornus amomum	silky dogwood	Shrub	3	3	3				2	2	2				17	17	17	19	19	19	25	25	25	26	26	26	28	28	28
Diospyros	diospyros	Tree																						2	2	2			
Diospyros virginiana	common persimmon	Tree	1	1	2										4	4	9	3	3	5	7	7	7	7 14	14	14	20	20	20
Fraxinus pennsylvanica	green ash	Tree	3	3	3										27	27	66	26	26	62	27	27	41	21	21	21	24	24	24
Juglans	walnut	Tree													1	1	1	. 1	1	3									
Juglans nigra	black walnut	Tree			1						1						4			2			1	4		1			
Liquidambar	sweetgum	Tree																		4									
Liquidambar styraciflua	sweetgum	Tree															21						5	,					
Liriodendron tulipifera	tuliptree	Tree				1	1	1	3	3	3				9	9	11	. 10	10	10	12	12	12	27	27	27	44	44	44
Nyssa	tupelo	Tree													5	5	5	8	8	8	10	10	10	13	13	13	9	9	9
Nyssa aquatica	water tupelo	Tree																									1	1	1
Nyssa sylvatica	blackgum	Tree													1	1	1	. 2	2	2									
Pinus taeda	loblolly pine	Tree															4			8			1	4					
Platanus occidentalis	American sycamore	Tree										1	1	. 1	. 8	8	8	11	11	11	2	2	2	<u>.</u> 2	2	2	1	1	1
Quercus	oak	Tree																			2	2	2	2 11	11	11	27	27	27
Quercus alba	white oak	Tree				1	1	1	1	1	1				7	7	7	9	9	9	8	8	8	3 10	10	10	3	3	3
Quercus nigra	water oak	Tree										1	. 1	. 1	. 6	6	6	5	5	5									
Quercus pagoda	cherrybark oak	Tree										1	. 1	. 1	. 1	1	1												
Quercus phellos	willow oak	Tree										3	3	3 3	10	10	10	7	7	7	1	1	1						
Quercus rubra	northern red oak	Tree													1	1	1	. 6	6	6	1	1	1	. 4	4	4	6	6	6
Ulmus americana	American elm	Tree															5			3									
Ulmus rubra	slippery elm	Tree			3												6										\Box		
Unknown		Shrub or Tree																						3	3	3	9	9	9
		Stem count	7	7	12	2	2	2	6	6	8	7	7 7	' 8	107	107	202	119	119	178	102	102	126	148	148	150	205	205	205
		size (ares)		1			1			1			1			14			14			14			14			14	
		size (ACRES)		0.02			0.02			0.02			0.02			0.35			0.35			0.35		1	0.35			0.35	
		Species count	3	3	5	2	2	2	3	3	5	5	5 5	6	15	15	23	14	14	20	12	12	16	5 14	14	16	15	15	15
	S	Stems per ACRE	283.3	283.3	485.6	80.94	80.94	80.94	242.8	242.8	323.7	283.3	283.3	323.7	309.3	309.3	583.9	344	344	514.5	294.8	294.8	364.2	427.8	427.8	433.6	592.6	592.6 5	92.6

Color for Density

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

PnoLS = Planted excluding livestakes P-all = Planting including livestakes

T = All planted and natural recruits including livestakes

T includes natural recruits

APPENDIX D STREAM SURVEY DATA

Tables 10a-e. Baseline Stream Data Summary
Tables 11a-l. Morphology and Hydraulic Summary Data
Cross-section Plots
Substrate Plots

Table 10A. Baseline Morphology and Hydraulic Summary Lamm UT 1

Parameter	USGS G	Sage Data		e-Exist	_		ect Refe larock P			ect Refe			Design			As-bu	ilt
Dimension	Min M	Iax Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)		age data is	4	12	6.5	8	12.1	8.1	10.7	11.3	11	6.5	7.5	7	6	9.1	8.6
Floodprone Width (ft)	unavailal	ole for this	6	27	17	15	25	18	122	140	131	30	90	50			50
BF Cross Sectional Area (ft2)	pro	oject			3.5			8			14.7			3.5	3.6	6.7	4.0
BF Mean Depth (ft)	_		0.3	0.9	0.6	0.8	1	0.8	1.3	1.4	1.4	0.46	0.55	0.5	0.5	0.7	0.6
BF Max Depth (ft)			0.7	1.3	1	1.1	1.4	1.4	1.9	2	2	0.6	0.8	0.7	0.7	1.2	0.9
Width/Depth Ratio			4.4	40	13.8	8	15.1	10.1	8	9	9	12	16	14	10	19	13
Entrenchment Ratio			1	6.8	2.9	1.9	2.2	2.1	11	13	12	4.3	12.9	7.1	6	8	5.8
Bank Height Ratio			1.3	2.6	1.7	1	1.8	1			1.4	1	1.3	1			1
Wetted Perimeter(ft)					===			===			===			===	6.3	9.6	8.9
Hydraulic radius (ft)					===			===			===			===	0.4	0.7	0.6
Pattern																	
Channel Beltwidth (ft)				attern of		20	38	22.8	17	36	29.8	21	42	28	21	42	28
Radius of Curvature (ft)				pools d		11	27	16.5	9	113	30.6	14	70	21	14	70	21
Meander Wavelength (ft)			straigh	itening a	activties	44	116	68.4	10	91	62.9	42	84	60	42	84	60
Meander Width ratio						2.4	4.7	2.8	1.5	3.5	2.7	3	6	4	3	6	4
Profile																	
Riffle length (ft)				attern of				===			===			===	5	44	15
Riffle slope (ft/ft)				pools d		1.00%	5.76%	3.16%	0.20%	1.20%	0.98%	3.71%	7.73%	4.94%	1.10%	9.83%	2.98%
Pool length (ft)			straigh	itening a	activties			===			===			===	5	12	8
Pool spacing (ft)						25	69	37.2	2	7.4	4	21	56	28	21	56	28
Substrate																	
d50 (mm)					===			===			===			===			===
d84 (mm)					===			===			===			===			===
Additional Reach Parameters																-	
Valley Length (ft)					===			===			===			===			466
Channel Length (ft)					===			===			===			===			559
Sinuosity					1.02			1.2			1.46			1.2			1.2
Water Surface Slope (ft/ft)					2.84%			2.58%			0.53%			2.56% -			2.56%
														3.62%			
BF slope (ft/ft)					===			===			===			===			===
Rosgen Classification					E/G 5			E 4/5			E 4/5			E/C 3/4			E/C 3/4

Table 10B. Baseline Morphology and Hydraulic Summary Lamm UT 2

Parameter	USG	S Gage	Data		re-Exist Conditi	_		ect Refe larock P			ect Refe			Design			As-built	^
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	USG	S gage d	ata is	7.1	15.6	9.7	8	12.1	8.1	10.7	11.3	11	6.5	7.5	7	5.9	9.7	7.6
Floodprone Width (ft)	unava	ailable fo	or this	15	40	27	15	25	18	122	140	131	30	90	50			50
BF Cross Sectional Area (ft2)	1	project				3.8			8			14.7			3.5	2.3	5.5	3.2
BF Mean Depth (ft)]			0.2	0.5	0.4	8.0	1	8.0	1.3	1.4	1.4	0.46	0.55	0.5	0.4	0.6	0.4
BF Max Depth (ft)]			0.5	1.3	0.8	1.1	1.4	1.4	1.9	2	2	0.6	8.0	0.7	0.5	1	0.7
Width/Depth Ratio				14.2	78	28.8	8	15.1	10.1	8	9	9	12	16	14	15	21	17
Entrenchment Ratio				1	5.6	3	1.9	2.2	2.1	11	13	12	4.3	12.9	7.1	5	9	6.6
Bank Height Ratio]			1	3	1.6	1	1.8	1			1.4	1	1.3	1			1
Wetted Perimeter(ft)	1					===			===			===			===	6.1	10.1	7.7
Hydraulic radius (ft)	1					===			===			===			===	0.3	0.5	0.4
Pattern	1																	
Channel Beltwidth (ft)	l				attern o		20	38	22.8	17	36	29.8	21	42	28	21	42	28
Radius of Curvature (ft)]				pools o		11	27	16.5	9	113	30.6	14	70	21	14	70	21
Meander Wavelength (ft)	l			straigh	ntening	activties	44	116	68.4	10	91	62.9	42	84	60	42	84	60
Meander Width ratio	l						2.4	4.7	2.8	1.5	3.5	2.7	3	6	4	3	8	4
Profile							_								_			
Riffle length (ft)					attern o				===			===			===	5	26	12
Riffle slope (ft/ft)					pools o		1.00%	5.76%	3.16%	0.20%	1.20%	0.98%	3.71%	7.73%	4.94%	0.84%	4.64%	2.94%
Pool length (ft)				straigr	ntening	activties			===			===			===	4	14	8
Pool spacing (ft)	ļ						25	69	37.2	2	7.4	4	21	56	28	21	56	28
Substrate	ļ				1			1	1		•	1	1	1		1	T	
d50 (mm)						===			===			===			===			===
d84 (mm)	l					===			===			===			===			===
Additional Reach Parameters	l																	
Valley Length (ft)						===			===			===			===			387
Channel Length (ft)						===			===			===			===			464
Sinuosity						1.03			1.2			1.46			1.2			1.2
Water Surface Slope (ft/ft)						3.07% -	1		2.58%			0.53%			2.56% -			3.01%
						4.31%									3.62%			
DE -1 (6/6)						===			===			===			===			
BF slope (ft/ft)						=== C/G 5			=== E 4/5			=== E 4/5			=== E/C 3/4			=== E/C 3/4
Rosgen Classification				Ļ		U/U 5			⊏ 4/5			⊏ 4/5			E/U 3/4			E/U 3/4

[^]Measured as-built numbers do not include D-type reach.

Table 10C. Baseline Morphology and Hydraulic Summary Lamm UT 3

Parameter	USGS Gage	Data		e-Exist		•	ect Refe			ect Refe			Design			As-bu	ilt
Dimension	Min Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	USGS gage of		3.4	12.3	7.2	8	12.1	8.1	10.7	11.3	11	6.5	7.5	7	6.3	8.6	7.3
Floodprone Width (ft)	unavailable fo		18	40	26	15	25	18	122	140	131	30	90	50			250
BF Cross Sectional Area (ft2)	project				2.6			8			14.7			3.5	2	3.1	2.5
BF Mean Depth (ft)			0.2	0.8	0.4	0.8	1	0.8	1.3	1.4	1.4	0.46	0.55	0.5	0.3	0.5	0.3
BF Max Depth (ft)			0.5	1.3	0.8	1.1	1.4	1.4	1.9	2	2	0.6	8.0	0.7	0.4	0.8	0.6
Width/Depth Ratio			4.3	61.5	24	8	15.1	10.1	8	9	9	12	16	14	15	27	23
Entrenchment Ratio			2.4	7	4.1	1.9	2.2	2.1	11	13	12	4.3	12.9	7.1	6	8	6.8
Bank Height Ratio			1	2	1.4	1	1.8	1			1.4	1	1.3	1			1
Wetted Perimeter(ft)					===			===			===			===	6.4	8.8	7.4
Hydraulic radius (ft)					===			===			===			===	0.3	0.4	0.3
Pattern																	
Channel Beltwidth (ft)				attern of		20	38	22.8	17	36	29.8	21	42	28	21	42	28
Radius of Curvature (ft)				pools d		11	27	16.5	9	113	30.6	14	70	21	14	70	21
Meander Wavelength (ft)			straigh	itening a	activties	44	116	68.4	10	91	62.9	42	84	60	42	84	60
Meander Width ratio						2.4	4.7	2.8	1.5	3.5	2.7	3	6	4	3	8	4
Profile																	
Riffle length (ft)				attern of				===			===			===	6	66	21
Riffle slope (ft/ft)				pools d		1.00%	5.76%	3.16%	0.20%	1.20%	0.98%	3.71%	7.73%	4.94%	0.82%	6.50%	3.13%
Pool length (ft)			straigh	itening a	activties			===			===			===	4	14	7
Pool spacing (ft)						25	69	37.2	2	7.4	4	21	56	28	21	56	28
Substrate																	
d50 (mm)					===			===			===			===			===
d84 (mm)					===			===			===			===			===
Additional Reach Parameters																	
Valley Length (ft)					===			===			===			===			846
Channel Length (ft)					===			===			===			===			1015
Sinuosity					1.05			1.2			1.46			1.2			1.2
Water Surface Slope (ft/ft)					3.34%			2.58%			0.53%			2.56% -			3.19%
														3.62%			
BF slope (ft/ft)					===			===			===			===			===
Rosgen Classification					Fc 5/6			Eg 5			E 4/5			E/C 3/4			C 3/4

Table 10D. Baseline Morphology and Hydraulic Summary Lamm Main Upstream

Parameter	USGS	S Gage Data		re-Exist	_		ect Refe larock F			ect Refe			Design	1		As-bu	ilt
Dimension		Max Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	USGS	S gage data is	11.7	26.5	18.5	8	12.1	8.1	10.7	11.3	11	11.2	12.9	12.1	12.3	13.3	12.7
Floodprone Width (ft)	unava	ilable for this	29	75	56	15	25	18	122	140	131	20	90	40			250
BF Cross Sectional Area (ft2)		project			10.4			8			14.7			10.4	8.8	12.5	10.4
BF Mean Depth (ft)			0.4	0.9	0.6	0.8	1	8.0	1.3	1.4	1.4	8.0	0.9	0.9	0.7	1	0.85
BF Max Depth (ft)			1.1	1.7	1.3	1.1	1.4	1.4	1.9	2	2	1.1	1.4	1.3	1	12.6	1.3
Width/Depth Ratio			11.7	66.3	31.5	8	15.1	10.1	8	9	9	12	16	14	13	17	15
Entrenchment Ratio			1.9	24	6.2	1.9	2.2	2.1	11	13	12	1.7	7.4	3.3	7	7	7.05
Bank Height Ratio			1	1.9	1.2	1	1.8	1			1.4	1	1.3	1			1
Wetted Perimeter(ft)					===			===			===			===	13	13.9	13.2
Hydraulic radius (ft)					===			===			===			===	0.7	0.9	8.0
Pattern						_									_		
Channel Beltwidth (ft)				attern o		20	38	22.8	17	36	29.8	36	73	48	36	73	48
Radius of Curvature (ft)				pools o		11	27	16.5	9	113	30.6	24	121	36	24	121	36
Meander Wavelength (ft)			straigr	itening a	activties	44	116	68.4	10	91	62.9	73	145	103	73	145	103
Meander Width ratio						2.4	4.7	2.8	1.5	3.5	2.7	3	6	4	3	6	4
Profile						•									•		
Riffle length (ft)				attern o				===			===			===	9	66	26
Riffle slope (ft/ft)				pools o		1.00%	5.76%	3.16%	0.20%	1.20%	0.98%	2.15%	4.48%	2.86%	0.00%	3.87%	1.86%
Pool length (ft)			straigr	itening a	activties			===			===			===	5	34	12
Pool spacing (ft)						25	69	37.2	2	7.4	4	36	97	48	36	97	48
Substrate								T	1	1				1			
d50 (mm)					===			===			===			===			===
d84 (mm)					===			===			===			===			===
Additional Reach Parameters																	
Valley Length (ft)					===			===			===			===			949
Channel Length (ft)					===			===			===			===			1139
Sinuosity					1.05			1.2			1.46			1.2			1.2
Water Surface Slope (ft/ft)					1.76%			2.58%			0.53%			1.79%			1.57%
BF slope (ft/ft)					===			===			===			===			===
Rosgen Classification					Eg5/Fc			E 4/5			E 4/5			E/C 3/4			E/C 3/4

Table 10E. Baseline Morphology and Hydraulic Summary Lamm Main Downstream

Parameter	USG	S Gage Data		re-Exist Conditi	0	9	ect Refe			ect Refe			Design	ı		As-bu	ilt
Dimension	Min	Max Me	l Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	USGS	S gage data is	8.7	17	13	8	12.1	8.1	10.7	11.3	11	11.2	12.9	12.1	12.8	13.4	13.0
Floodprone Width (ft)	unava	ilable for thi	17	24	22	15	25	18	122	140	131	20	90	40			250
BF Cross Sectional Area (ft2)		project			10.4			8			14.7			10.4	9.7	11.8	11.3
BF Mean Depth (ft)			0.6	1.2	0.9	0.8	1	8.0	1.3	1.4	1.4	8.0	0.9	0.9	8.0	0.9	0.8
BF Max Depth (ft)			0.9	1.9	1.4	1.1	1.4	1.4	1.9	2	2	1.1	1.4	1.3	1.1	1.3	1.3
Width/Depth Ratio			7.3	28.3	17.4	8	15.1	10.1	8	9	9	12	16	14	15	17	16
Entrenchment Ratio			1.2	2.6	1.8	1.9	2.2	2.1	11	13	12	1.7	7.4	3.3	7	7	6.9
Bank Height Ratio			1.3	2.7	2	1	1.8	1			1.4	1	1.3	1			1
Wetted Perimeter(ft)					===			===			===			===	13.2	14.1	13.6
Hydraulic radius (ft)					===			===			===			===	0.7	0.9	8.0
Pattern																	
Channel Beltwidth (ft)				attern o		20	38	22.8	17	36	29.8	36	73	48	36	73	48
Radius of Curvature (ft)				pools o		11	27	16.5	9	113	30.6	24	121	36	24	121	36
Meander Wavelength (ft)			straigh	ntening	activties	44	116	68.4	10	91	62.9	73	145	103	73	145	103
Meander Width ratio						2.4	4.7	2.8	1.5	3.5	2.7	3	6	4	3	6	4
Profile																	
Riffle length (ft)				attern o				===			===			===	15	142	59
Riffle slope (ft/ft)				pools o		1.00%	5.76%	3.16%	0.20%	1.20%	0.98%	2.15%	4.48%	2.86%	0.71%	3.22%	1.93%
Pool length (ft)			straigi	ntening	activties			===			===			===	7	40	18
Pool spacing (ft)						25	69	37.2	2	7.4	4	36	97	48	36	97	48
Substrate																	
d50 (mm)					===			===			===			===			===
d84 (mm)					===			===			===			===			===
Additional Reach Parameters																	
Valley Length (ft)					===			===			===			===			961
Channel Length (ft)					===			===			===			===			1153
Sinuosity					NA			1.2			1.46			1.2			1.2
Water Surface Slope (ft/ft)					NA			2.58%			0.53%			1.79%			1.72%
BF slope (ft/ft)					===			===			===			===			===
Rosgen Classification					Eg5/Fc			E 4/5			E 4/5			E/C 3/4			E/C 3/4

Table 11A. Morphology and Hydraulic Monitoring Summary
Lamm UT-Main (Downstream) - Stream and Wetland Restoration Site

Earlin C1-Main (Downstream	4111)	Durce	1111 (411)	1 1100	unu i	TOTOL	441011	Ditt																						
Parameter		XS 1	Pool (Main I	Oown)			XS 2	Riffle	(Main	Down)			XS 3	Riffle	Main l	Down)			XS 4	Riffle (Main l	Down)			XS 5	Pool (Main D	own)	
Dimension	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7
BF Width (ft)	13	12.2	12.5	11.8	10		12.8	14.4	12.6	13.2	13.9		13.1	*	12.9	14.3	12.8		13	12.7	12.1	12.6	12.6		14.1	14.8	15.7	17.2	17.3	
Floodprone Width (ft)							90	90	90	90	90		90	*	90	90	90		90	90	90	90	90			-	-			
BF Cross Sectional Area (ft2)	11.2	12.2	9.7	9.4	9.4		9.7	11.1	12.6	9.5	9.5		11.8	*	9.1	8.1	8.1		11.3	10.5	10.3	9.4	9.4		11.8	6.6	7.7	7.6	7.6	
BF Mean Depth (ft)	0.9	1.0	0.8	0.8	0.9		0.8	0.8	1.0	0.7	0.7		0.9	*	0.7	0.6	0.6		0.9	0.8	0.9	0.7	0.7		0.8	0.4	0.5	0.4	0.4	
BF Max Depth (ft)	1.7	1.5	1.6	1.4	1.6		1.1	1.1	1.2	1.2	1.1		1.3	*	1.3	1.2	1.3		1.3	1.4	1.4	1.2	1.1		1.7	0.8	0.8	0.8	0.7	
Width/Depth Ratio		-					16.9	18.7	12.6	18.3	20.3		14.5	*	18.3	25.2	20.2		15.0	15.4	14.2	16.9	16.9		-	-	-			
Entrenchment Ratio							7.0	6.3	7.1	6.8	6.5		6.9	*	7.0	6.3	7.0		6.9	7.1	7.4	7.1	7.1							
Low Bank Height (ft)	1.7	1.7	1.7	1.7	1.6		1.1	1.1	1.1	1.1	1.1		1.3	*	1.3	1.3	1.3		1.3	1.3	1.3	1.3	1.1		1.7	1.7	1.7	1.7	0.6	
Bank Height Ratio**							1	1	1.091	1.091	1		1	*	1	<1	1		1	1.077	1.077	<1	1							
Wetted Perimeter (ft)	13.6	12.7	13.2	12.3	10.7		13.2	14.7	13	13.6	14.3		13.7	*	13.4	14.7	13.2		13.6	13.2	12.8	13	13		15	15.1	15.9	17.3	17.4	
Hydraulic Radius (ft)	0.8	0.8	0.7	0.8	0.9		0.7	0.8	1.0	0.7	0.7		0.9	*	0.7	0.6	0.6		0.8	0.8	0.8	0.7	0.7		0.8	0.4	0.5	0.4	0.4	

Parameter		XS 6	Riffle (Main l	Down)			XS 7	Riffle (Main 1	Down)			XS 8	Riffle ((Main)	Down)			XS 9	Riffle (Main l	Down)			XS 10	Riffle	(Main	Down)	
Dimension	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7
BF Width (ft)	13.4	13.3	13	12.7	13.3		12.8	11.2	12.2	11.9	12.7		13.6	13.5	14	14.7	14.5		12.3	14	12.5	12.1	12.3		16.1	17.2	17.3	16.9	16.6	
Floodprone Width (ft)	90	90	90	90	90		90	90	90	90	90		90	90	90	90	90		90	90	90	90	90		90	90	90	90	90	
BF Cross Sectional Area (ft2)	11.3	11	13.4	12.1	12.1		8.7	8.9	9.1	8.8	8.8		11.6	8.2	7.6	6.8	6.8		9.8	9.8	8.9	7.3	7.3		12.4	11.8	12.1	10.1	10.1	
BF Mean Depth (ft)	0.8	0.8	1.0	1.0	0.9		0.7	0.8	0.7	0.7	0.7		0.9	0.6	0.5	0.5	0.5		0.8	0.7	0.7	0.6	0.6		0.8	0.7	0.7	0.6	0.6	
BF Max Depth (ft)	1.3	1.6	1.8	1.7	2		1.2	1.2	1.3	1.2	1.2		1.5	0.9	0.8	0.8	0.7		1.2	1.3	1.2	1.3	1		1.3	1.1	1.2	1.2	1	
Width/Depth Ratio	15.9	16.1	12.6	13.3	14.6		18.8	14.1	16.4	16.1	18.3		15.9	22.2	25.8	31.8	30.9		15.4	20.0	17.6	20.1	20.7		20.9	25.1	24.7	28.3	27.3	
Entrenchment Ratio	6.7	6.8	6.9	7.1	6.8		7.0	8.0	7.4	7.6	7.1		6.6	6.7	6.4	6.1	6.2		7.3	6.4	7.2	7.4	7.3		5.6	5.2	5.2	5.3	5.4	
Low Bank Height (ft)	1.3	1.3	1.3	1.3	1.4		1.2	1.2	1.2	1.2	1.2		1.5	1.5	1.5	1.5	0.8		1.2	1.2	1.2	1.2	1.1		1.3	1.3	1.3	1.3	0.8	
Bank Height Ratio	1	1.231	1.385	1.308	<1		1	1	1.083	1	1		1	<1	<1	<1	1.143		1	1.083	1	1.083	1.1		1	<1	<1	<1	<1	
Wetted Perimeter (ft)	14.1	13.9	13.9	13.4	14.1		13.2	11.6	12.8	12.4	13		14.3	13.8	14.4	14.9	14.7		12.9	14.5	12.8	15.2	12.5		16.6	17.5	17.6	17.2	16.8	
Hydraulic Radius (ft)	0.8	0.8	1.0	0.9	0.9		0.7	0.8	0.7	0.7	0.7		0.8	0.6	0.5	0.5	0.5		0.8	0.7	0.7	0.5	0.6		0.7	0.7	0.7	0.6	0.6	

^{*} Note: Cross Section 3 was not measured in MY1 due to yellow jacket nest at cross section.

^{**}MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.

Table 11B. Morphology and Hydraulic Monitoring Summary Lamm UT-Main (Downstream) - Stream and Wetland Restoration Site

Lamm UT-Main (Downstream	am) -	Strea	00 (2015) M			testor	ation	Site										
Parameter	MY	-00 (2	015)	MY	-01 (20	015)	MY	7-02 (20	016)	MY	-03 (20	017)	MY	-05 (20	019)	MY	-07 (20	021)
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Pattern																		
Channel Beltwidth (ft)	36	73	48															
Radius of Curvature (ft)	24	121	36															
Meander Wavelength (ft)	73	145	103															
Meander Width Ratio	3	6	4															
Profile																		
Riffle Length (ft)	15																	
Riffle Slope (ft/ft)	0.71%	3.22%	1.93%															
Pool Length (ft)	7	40	18															
Pool Spacing (ft)	36	97	48															
Additonal Reach Parameters																		
Valley Length (ft)		961			961			961			961			961				
Channel Length (ft)		1,153			1,153			1,153			1,153			1,153				
Sinuosity		1.2																
Water Surface Slope (ft/ft)		0.0172																
BF Slope (ft/ft)																		
D50		16.2			13.6			42.1			40.8			30.6				
D84		60			67			97			99			98				
Rosgen Classification		60 C/E 3/4			C/E 3/4			C/E 3/4			C/E 3/4			C/E 3/4				

Table 11C. Morphology and Hydraulic Monitoring Summary

Lamm UT-Main (Downstream) - Stream and Wetland Restoration Site

Parameter		XS 11	Pool	(Main	Down)			XS 12	Riffle	(Main	Down)			XS 13	Riffle	(Main	Down)			XS 14	Riffle	(Main	Down)			XS 15	Pool (Main l	Down)	
Dimension	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7
BF Width (ft)	13.4	10.5	10.7	11	13.6		11.9	11.5	11.8	12.5	12.7		15.4	16	17	15.8	16.4		13	13.3	12.9	13	13.1		16.1	13.8	12.6	12.6	12.3	
Floodprone Width (ft)		-					90	90	90	90	90		90	90	90	90	90		90	90	90	90	90				-			
BF Cross Sectional Area (ft2)	9.8	11.3	11.2	11.6	11.6		7.2	5.1	5.2	5.5	5.5		8.6	9.2	8.4	7.2	7.2		12.9	15.6	16	14.2	14.2		12.7	10.4	10.1	9.1	9.1	
BF Mean Depth (ft)	0.7	1.1	1.0	1.1	0.9		0.6	0.4	0.4	0.4	0.4		0.6	0.6	0.5	0.5	0.4		1.0	1.2	1.2	1.1	1.1		0.8	0.8	0.8	0.7	0.7	
BF Max Depth (ft)	1.4	1.6	1.6	1.6	1.6		1	1	0.8	0.6	0.7		0.9	1.5	1.1	1.3	1		1.4	2.2	1.9	1.9	1.8		1.8	1.6	1.5	1.4	1.2	
Width/Depth Ratio		-					19.7	25.9	26.8	28.4	29.3		27.6	27.8	34.4	34.7	37.4		13.1	11.3	10.4	11.9	12.1							
Entrenchment Ratio		-					7.6	7.8	7.6	7.2	7.1		5.8	5.6	5.3	5.7	5.5		6.9	6.8	7.0	6.9	6.9							
Low Bank Height (ft)	1.4	1.4	1.4	1.4	1.4		1	1	1	1	0.9		0.9	0.9	0.9	0.9	0.9		1.4	1.4	1.4	1.4	2.1		1.8	1.8	1.8	1.8	1.2	
Bank Height Ratio**							1	1	<1	<1	1.286		1	1.667	1.222	1.444	<1		1	1.571	1.357	1.357	1.167							
Wetted Perimeter (ft)	13.9	11.3	11.5	11.9	14.3		12.2	11.7	11.7	12.9	12.8		15.6	16.6	17.5	16.5	16.6		13.6	14.5	14.4	14.3	14.2		16.7	14.4	13.4	13.4	12.9	
Hydraulic Radius (ft)	0.7	1	1.0	1.0	0.8		0.6	0.4	0.4	0.4	0.4		0.6	0.6	0.5	0.4	0.4		1	1.1	1.1	1.0	1.0		0.8	0.7	0.8	0.7	0.7	

Parameter		XS 16	Riffle (Main I	Oown)*			XS 17	Riffle ((Main I	Oown)*			XS 18	Riffle (Main I	Oown)*			XS 19	Pool (Main D	own)*	
Dimension	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7
BF Width (ft)	16.2	16.0	16.2	16.0	16.6		14.3	14	13.9	14.4	14.8		13.2	13.1	13.3	13.5	13.6		12	12.1	11.8	11.7	12.6	
Floodprone Width (ft)	20.0	20.0	20.0	20.0	20.0		19	19	19	19	19		31	31	31	31	31			-				
BF Cross Sectional Area (ft2)	10.1	9.6	9.8	8.6	8.6		11.2	12.6	11.5	13.2	13.2		10.1	11.6	11.9	11.8	11.8		13.1	14.6	14.6	13.4	13.4	
BF Mean Depth (ft)	0.6	0.6	0.6	0.5	0.5		0.8	0.9	0.8	0.9	0.9		0.8	0.9	0.9	0.9	0.9		1.1	1.2	1.2	1.1	1.1	
BF Max Depth (ft)	0.8	0.9	1.0	0.9	0.8		1.3	1.4	1.1	1.2	1.4		1.2	1.4	1.5	1.4	1.3		1.4	1.9	1.7	1.5	1.5	
Width/Depth Ratio	26.0	26.7	26.8	29.8	32.0		18.3	15.6	16.8	15.7	16.6		17.3	14.8	14.9	15.4	15.7							
Entrenchment Ratio	1.2	1.3	1.2	1.3	1.2		1.3	1.4	1.4	1.3	1.3		2.3	2.4	2.3	2.3	2.3							
Low Bank Height (ft)	1.9	0.8	0.8	0.8	1.9		1.3	1.3	1.3	1.3	2.3		1.2	1.2	1.2	1.2	2.2		1.4	1.4	1.4	1.4	1.6	
Bank Height Ratio	2.375	1.125	1.25	1.125	2.375		1	1.077	<1	<1	1.643		1	1.167	1.25	1.167	1.692							
Wetted Perimeter (ft)	16.4	16.2	16.5	16.2	16.7		15.3	14.9	14.9	15.7	16.1		14	14.1	14.7	14.8	14.3		12.9	13	12.8	12.6	13.2	
Hydraulic Radius (ft)	0.6	0.6	0.6	0.5	0.5		0.7	0.8	0.8	0.8	0.8		0.7	0.8	0.8	0.8	0.8		1	1.1	1.1	1.1	1.0	

^{*} Enhancement (Level II) Reach

^{**}MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.

Table 11D. Morphology and Hydraulic Monitoring Summary

Lamm UT-Main (Downstream) - Stream and Wetland Restoration Site

Lanin U1-Main (Downstre									01()	3.43	02 (2)	017)	M	05 (2)	010)	3.43	07 (2)	021)
Parameter	MY	-00 (2	015)		-01 (2)15)	IVI Y	-02 (20	010)		-03 (2	U17)		-05 (20	019)		-07 (20	JZ1)
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Pattern																		
Channel Beltwidth (ft)	36	73	48															
Radius of Curvature (ft)	24	121	36															
Meander Wavelength (ft)	73	145	103															
Meander Width Ratio	3	6	4															
Profile																		
Riffle Length (ft)	15																	
Riffle Slope (ft/ft)	0.71%	3.22%	1.93%															
Pool Length (ft)	7	40	18															
Pool Spacing (ft)	36	97	48															
Additonal Reach Parameters																		
Valley Length (ft)		961			961			961			961			961				
Channel Length (ft)		1,153			1,153			1,153			1,153			1,153				
Sinuosity		1.2																
Water Surface Slope (ft/ft)		0.0172																
BF Slope (ft/ft)																		
D50		16.2			13.6			42.1			40.8			30.6				
D84		60			67			97			99			98				
Rosgen Classification		C/E 3/4			C/E 3/4			C/E 3/4			C/E 3/4			C/E 3/4				

Table 11E. Morphology and Hydraulic Monitoring Summary Lamm Main (Upstream) - Stream and Wetland Restoration Site

Parameter		XS 2	20 Pool	(Mai	n Up)			XS 2	1 Riffl	e (Mai	n Up)			XS 2	2 Riffl	e (Mai	in Up)			XS 2	3 Riffl	e (Mai	in Up)			XS 2	4 Pool	(Maiı	ı Up)	
Dimension	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7
BF Width (ft)	7.1	8.1	11.8	11.7	10.6		13.3	13	12	13	12.6		12.6	13.4	13	13.3	11.8		12.3	13.3	11.9	12.8	12.7		12.8	13.1	12.1	12.9	14.7	
Floodprone Width (ft)							90	90	90	90	90		90	90	90	90	90		90	90	90	90	90					-		
BF Cross Sectional Area (ft2)	6.7	4.9	5.6	5.6	5.6		12.5	10	9.9	9.1	9.1		12.5	11.3	11.2	11.5	11.5		8.8	9.5	9.1	8.8	8.8		13.1	12.9	13.1	12.9	12.9	
BF Mean Depth (ft)	0.9	0.6	0.5	0.5	0.5		0.9	0.8	0.8	0.7	0.7		1.0	0.8	0.9	0.9	1.0		0.7	0.7	0.8	0.7	0.7		1.0	1.0	1.1	1.0	0.9	
BF Max Depth (ft)	1.3	1	1	1	1		1.4	1.5	1.6	1.6	1.3		1.4	1.9	1.9	2.2	2.2		1	1.3	1.5	1.4	1.4		1.8	1.6	1.7	1.6	1.6	
Width/Depth Ratio							14.2	16.9	14.5	18.6	17.4		12.7	15.9	15.1	15.4	12.1		17.2	18.6	15.6	18.6	18.3					-		
Entrenchment Ratio	-						6.8	6.9	7.5	6.9	7.1		7.1	6.7	6.9	6.8	7.6		7.3	6.8	7.6	7.0	7.1				-	1		
Low Bank Height (ft)	1.3	1.3	1.3	1.3	1.2		1.4	1.4	1.4	1.4	1.3		1.4	1.4	1.4	1.4	2.5		1	1	1	1	1.6		1.8	1.8	1.8	1.8	1.6	
Bank Height Ratio							1	1.071	1.143	1.143	1		1	1.357	1.357	1.571	1.136		1	1.3	1.5	1.4	1.143							
Wetted Perimeter (ft)	8.4	8.6	12.2	12.2	10.9		13.9	13.4	12.4	13.7	13		13.3	14.4	13.9	14.7	13.3		13	13.9	12.6	13.3	13.1		13.6	13.9	12.9	13.7	15.3	
Hydraulic Radius (ft)	0.8	0.6	0.5	0.5	0.5		0.9	0.7	0.8	0.7	0.7		0.9	0.8	0.8	0.8	0.9		0.7	0.7	0.7	0.7	0.7		1	0.9	1.0	0.9	0.8	

Parameter		XS 2	5 Riffl	e (Mai	n Up)			XS 2	6 Pool	(Maiı	ı Up)			XS 2'	7 Riffl	e (Mai	in Up)			XS 2	8 Pool	(Mai	n Up)			XS 2	9 Riffl	e (Mai	n Up)	
Dimension	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7
BF Width (ft)	13.0	15.4	15.2	15.2	14.4		13.3	13.4	13.9	13.5	13.6		12.0	12.8	12.3	12.4	13.5		11.4	11.0	10.3	10.4	13.1		12.8	12.7	12.5	12.3	13.7	
Floodprone Width (ft)	90.0	90.0	90.0	90.0	90.0		i	-	1	i			90.0	90.0	90.0	90.0	90.0		-		-	-			90.0	90.0	90.0	90.0	90.0	
BF Cross Sectional Area (ft2)	11.3	11.4	10.8	10.6	10.6		12.1	11.8	11.6	10.8	10.8		9.5	9.7	10.8	9.8	9.8		8.4	8.9	7.6	8.3	8.3		12.1	12.1	12.0	11.6	11.6	
BF Mean Depth (ft)	0.9	0.7	0.7	0.7	0.7		0.9	0.9	0.8	0.8	0.8		0.8	0.8	0.9	0.8	0.7		0.7	0.8	0.7	0.8	0.6		0.9	1.0	1.0	0.9	0.8	
BF Max Depth (ft)	1.4	1.2	1.3	1.3	1.3		1.8	1.6	1.7	1.6	1.5		1.2	1.2	1.4	1.2	1.2		1.3	1.5	1.4	1.4	1.3		1.4	1.5	1.4	1.4	1.3	
Width/Depth Ratio	15.0	20.8	21.4	21.8	19.6			-	1	-			15.2	16.9	14.0	15.7	18.6				-	-			13.5	13.3	13.0	13.0	16.2	
Entrenchment Ratio	6.9	5.8	5.9	5.9	6.3								7.5	7.0	7.3	7.3	6.7								7.0	7.1	7.2	7.3	6.6	
Low Bank Height (ft)	1.4	1.4	1.4	1.4	1.2		1.8	1.8	1.8	1.8	1.5		1.2	1.2	1.2	1.2	1.3		1.3	1.3	1.3	1.3	1.4		1.4	1.4	1.4	1.4	1.2	
Bank Height Ratio**	1	<1	<1	<1	<1		1	<1	<1	<1	1		1	1	1.167	1	1.083								1	1.071	1	1	<1	
Wetted Perimeter (ft)	13.5	15.8	15.7	15.6	14.7		14.0	14.0	14.4	14.0	14.0		12.4	13.1	12.8	12.8	13.7		11.8	11.7	10.9	11.0	13.7		13.5	13.4	13.3	12.9	14.2	
Hydraulic Radius (ft)	0.8	0.7	0.7	0.7	0.7		0.9	0.8	0.8	0.8	0.8		0.8	0.7	0.8	0.8	0.7		0.7	0.8	0.7	0.8	0.6		0.9	0.9	0.9	0.9	0.8	

Parameter		XS 3	0 Pool	(Mair	ı Up)			XS 3	1 Riffl	e (Mai	n Up)			XS 3	2 Riffl	e (Mai	n Up)	
Dimension	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7
BF Width (ft)	12.3	12.6	11.7	12.4	15.3		11.6	11.4	11.6	11.7	12.2		12.7	13.2	13.9	14.1	13.8	
Floodprone Width (ft)		-			-		90	90	90	90	90		25	25	25	25	25	
BF Cross Sectional Area (ft2)	11.5	11	10	11.1	11.1		8.6	8.3	8.1	8.6	8.6		9	8.7	8.8	8.2	8.2	
BF Mean Depth (ft)	0.9	0.9	0.9	0.9	0.7		0.7	0.7	0.7	0.7	0.7		0.7	0.7	0.6	0.6	0.6	
BF Max Depth (ft)	1.7	1.8	1.7	1.8	1.7		1	1.2	1.2	1.2	1.2		1	0.9	1	0.8	0.8	
Width/Depth Ratio	-	-			-		15.6	15.7	16.6	15.9	17.3		17.9	20.0	22.0	24.2	23.2	
Entrenchment Ratio	-				-		7.8	7.9	7.8	7.7	7.4		2.0	1.9	1.8	1.8	1.8	
Low Bank Height (ft)	1.7	1.7	1.7	1.7	1.6		1	1	1	1	1.4		1	1	1	1	1	
Bank Height Ratio		-			-		1	1.2	1.2	1.2	1.167		1	<1	1	<1	1.25	
Wetted Perimeter (ft)	12.9	13.2	12.5	13	15.8		12	11.9	12.3	12.1	12.5		13	13.6	14.2	14.3	14	
Hydraulic Radius (ft)	0.9	0.8	0.8	0.9	0.7		0.7	0.7	0.7	0.7	0.7		0.7	0.6	0.6	0.6	0.6	

^{**}MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.

Table 11F. Morphology and Hydraulic Monitoring Summary

Lamm Main	(Unstream) -	Stream and	Wetland	Restoration Site
Lamm Mam	(U)DSLFeam) -	Stream and	weuana	Restoration Site

Parameter	MY	-00 (2	015)	MY	-01 (2	015)	MY	7-02 (2	016)	MY	-03 (2	017)	MY	-05 (20	019)	MY	-07 (2	021)
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Pattern																		
Channel Beltwidth (ft)	36	73	48															
Radius of Curvature (ft)	24	121	36															
Meander Wavelength (ft)	73	145	103															
Meander Width Ratio	3	6	4															
Profile																		
Riffle Length (ft)	10	66	26															
Riffle Slope (ft/ft)	0.00%	3.87%	1.86%															
Pool Length (ft)	5	34	12															
Pool Spacing (ft)	36	97	48															
Additonal Reach Parameters																		
Valley Length (ft)		949			949			949			949			949				
Channel Length (ft)		1,139			1,139			1,139			1,139			1,139				
Sinuosity		1.2																
Water Surface Slope (ft/ft)		0.0157																
BF Slope (ft/ft)																		
D50		16.2			13.6			42.1			40.8			30.6				
D84		60			67			97			99			98				
Rosgen Classification		C/E 3/4	ļ		C/E 3/4	ı		C/E 3/4	1		C/E 3/4			C/E 3/4				

Table 11G. Morphology and Hydraulic Monitoring Summary

Lamm UT-1 - Stream and Wetland Restoration Site

Parameter		X	S 1 Po	ol (UT	1)			XS	S 2 Rif	fle (UT	1)			XS	3 Rif	fle (UT	T 1)			XS	S 4 Poo	l* (UI	Γ1)			XS	5 5 Riff	le (U'	ſ 1)	
Dimension	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7
BF Width (ft)	8.1	8.2	8	8.3	8.4		8	7.9	8	8.2	7.8		9.1	8.7	8.8	8.4	8.5		6	7.9	7	8.8	7.8		8.7	8.4	9	7.9	9.2	
Floodprone Width (ft)		-					50	50	50	50	50		50	50	50	50	50								50	50	50	50	50	
BF Cross Sectional Area (ft2)	6.4	5.4	5.4	4.5	4.5		5	4.5	4.3	4.6	4.6		6.7	6.5	6.5	6.4	6.4		3.6	3.6	3.5	4.1	4.1		4	4	3.7	3.5	3.5	
BF Mean Depth (ft)	0.8	0.7	0.7	0.5	0.5		0.6	0.6	0.5	0.6	0.6		0.7	0.7	0.7	0.8	0.8		0.6	0.5	0.5	0.5	0.5		0.5	0.5	0.4	0.4	0.4	
BF Max Depth (ft)	1.3	1.2	1.1	1.1	1		1	0.9	1	1	1		1.2	1.3	1.6	2	1.3		0.9	0.9	0.9	0.9	1		0.9	0.9	0.9	0.8	0.7	
Width/Depth Ratio		i					12.8	13.9	14.9	14.6	13.2		12.4	11.6	11.9	11.0	11.3								18.9	17.6	21.9	17.8	24.2	
Entrenchment Ratio		-					6.3	6.3	6.3	6.1	6.4		5.5	5.7	5.7	6.0	5.9								5.7	6.0	5.6	6.3	5.4	
Low Bank Height (ft)	1.3	1.3	1.3	1.3	1.3		1	1	1	1	1.4		1.2	1.2	1.2	1.2	1.3		0.9	0.9	0.9	0.9	0.9		0.9	0.9	0.9	0.9	1.1	
Bank Height Ratio**							1	<1	1	1	1.4		1	1.083	1.333	1.667	1								1	1	1	<1	1.571	
Wetted Perimeter (ft)	8.6	8.7	8.4	8.8	8.8		8.4	8.3	8.4	8.5	8.2		9.6	9.4	10.2	10.2	9.1		6.3	8.3	7.6	9.1	8.1		9	8.7	9.4	8.1	9.3	
Hydraulic Radius (ft)	0.7	0.6	0.6	0.5	0.5		0.6	0.5	0.5	0.5	0.6		0.7	0.7	0.6	0.6	0.7		0.6	0.4	0.5	0.5	0.5		0.4	0.5	0.4	0.4	0.4	

Parameter		XS	6 Rif	fle (UT	1)			XS	1 Riffl	e (UT	1-a)			XS	2 Riffl	e (UT	1-a)	
Dimension	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7
BF Width (ft)	8.6	8.9	8.3	8.3	8.7		7.4	8	6.8	7.7	6.2		7.8	8.4	8	7.9	7.9	
Floodprone Width (ft)	17	18	17	17	17		50	50	50	14	14		50	50	50	50	50	
BF Cross Sectional Area (ft2)	4	3.8	4.2	3.9	3.9		2.5	2.7	1.9	2.1	2.1		3.4	3.7	3	3.5	3.5	
BF Mean Depth (ft)	0.5	0.4	0.5	0.5	0.4		0.3	0.3	0.3	0.3	0.3		0.4	0.4	0.4	0.4	0.4	
BF Max Depth (ft)	0.7	0.8	0.9	0.9	0.8		0.5	0.7	0.7	0.6	0.7		0.6	0.8	0.6	0.8	0.7	
Width/Depth Ratio	18.5	20.8	16.4	17.7	19.4		21.3	23.7	24.3	28.2	18.3		17.6	19.1	21.3	17.8	17.8	
Entrenchment Ratio	2.0	2.0	2.0	2.0	2.0		6.8	6.3	7.4	1.8	2.3		6.4	6.0	6.3	6.3	6.3	
Low Bank Height (ft)	0.7	0.7	0.7	0.7	1		0.5	0.5	0.5	0.5	0.8		0.6	0.6	0.6	0.6	0.8	
Bank Height Ratio**	1	1.143	1.286	1.286	1.25		1	1.4	1.4	1.2	1.143		1	1.333	1	1.333	1.143	
Wetted Perimeter (ft)	8.9	9.2	8.9	9	8.8		7.5	8.2	7.2	7.9	6.3		8	8.6	8.1	8.1	8.1	
Hydraulic Radius (ft)	0.4	0.4	0.5	0.4	0.4		0.3	0.3	0.3	0.3	0.3		0.4	0.4	0.4	0.4	0.4	

^{*}XS-4 (UT-1) was determined to be a pool. It was mislabeled as a riffle during previous monitoring years.

^{**}MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.

Table 11H. Morphology and Hydraulic Monitoring Summary

Lamm UT-1 - Stream and Wetland Restoration Site

Parameter	MY	-00 (20	015)	MY	-01 (2	015)	MY	-02 (20	016)	MY	-03 (2	017)	MY	7-05 (20	019)	MY	-07 (20)21)
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Pattern																		
Channel Beltwidth (ft)	21	42	28															
Radius of Curvature (ft)	14	70	21															
Meander Wavelength (ft)	42	84	60															
Meander Width Ratio	3	6	4															
Profile																		
Riffle Length (ft)	5	44	15															
Riffle Slope (ft/ft)	1.10%	9.83%	2.98%															
Pool Length (ft)	5	12	8															
Pool Spacing (ft)	21	56	28															
									-					-				
Additonal Reach Parameters																		
Valley Length (ft)		466			466			466			466			466				
Channel Length (ft)		559			559			559			559			559				
Sinuosity		1.2																
Water Surface Slope (ft/ft)		0.0256																
BF Slope (ft/ft)																		
D50		15.2			13.4			11			13.3			7.5				
D84		67			58			73			77			46				
Rosgen Classification		C/E 3/4			C/E 3/4			C/E 3/4			C/E 3/4			C/E 3/4				

Table 11I. Morphology and Hydraulic Monitoring Summary Lamm UT-2 - Stream and Wetland Restoration Site

Parameter		XS	S 1 Rif	fle (UT	7 2)			XS	S 2 Rif	fle (UT	2)			X	S 3 Po	ol (UT	2)			XS	4 Rif	fle (UT	7 2)			XS	5 5 Rifi	fle (UT	2)	
Dimension	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7
BF Width (ft)	7.4	7.8	7.3	7.7	6.7		7.6	6.5	6.5	7.0	6.8		7.5	7.3	7.2	7.5	7.0		7.6	8.6	8.1	8.8	9.4		9.7	7.8	7.9	7.3	7.7	
Floodprone Width (ft)	50.0	50.0	50.0	50.0	50.0		50.0	50.0	50.0	50.0	50.0			-	-				50.0	50.0	50.0	50.0	50.0		50.0	50.0	50.0	50.0	50.0	
BF Cross Sectional Area (ft2)	3.2	3.8	3.4	3.1	3.1		2.7	2.6	2.0	2.9	2.9		7.2	6.3	5.9	6.1	6.1		3.6	3.4	3.4	3.4	3.4		5.5	5.6	5.6	5.6	5.6	
BF Mean Depth (ft)	0.4	0.5	0.5	0.4	0.5		0.4	0.4	0.3	0.4	0.4		1.0	0.9	0.8	0.8	0.9		0.5	0.4	0.4	0.4	0.4		0.6	0.7	0.7	0.8	0.7	
BF Max Depth (ft)	0.7	0.9	0.8	0.8	0.8		0.5	0.7	0.6	0.6	0.6		1.4	1.3	1.3	1.3	1.4		0.7	0.8	0.7	0.7	0.8		1.0	1.4	1.5	1.3	1.2	
Width/Depth Ratio	17.1	16.0	15.7	19.1	14.5		21.4	16.3	21.1	16.9	15.9								16.0	21.8	19.3	22.8	26.0		17.1	10.9	11.1	9.5	10.6	
Entrenchment Ratio	6.8	6.4	6.8	6.5	7.5		6.6	7.7	7.7	7.1	7.4								6.6	5.8	6.2	5.7	5.3		5.2	6.4	6.3	6.8	6.5	
Low Bank Height (ft)	0.7	0.7	0.7	0.7	0.9		0.5	0.5	0.5	0.5	0.8		1.4	1.4	1.4	1.4	1.2		0.7	0.7	0.7	0.7	0.8		1	1	1	1	1.4	
Bank Height Ratio**	1	1.286	1.143	1.143	1.125		1	1.4	1.2	1.2	1.333								1	1.143	1	1	1		1	1.4	1.5	1.3	1.167	
Wetted Perimeter (ft)	7.6	8.1	7.6	7.9	6.9		7.7	6.9	7.3	7.2	7.0		8.3	8.1	8.0	8.3	7.7		7.9	8.9	8.4	9.0	9.6		10.1	8.4	9.5	8.2	8.3	
Hydraulic Radius (ft)	0.4	0.5	0.4	0.4	0.4		0.3	0.4	0.3	0.4	0.4		0.9	0.8	0.7	0.7	0.8		0.4	0.4	0.4	0.4	0.4		0.5	0.7	0.6	0.7	0.7	

Parameter		XS	6 6 Rifi	fle (UT	2)	
Dimension	MY 0	MY1	MY2	MY3	MY5	MY7
BF Width (ft)	5.9	5.9	6.3	5.3	5.5	
Floodprone Width (ft)	50	50	50	50	50	
BF Cross Sectional Area (ft2)	2.3	2.7	2.2	2	2	
BF Mean Depth (ft)	0.4	0.5	0.3	0.4	0.4	
BF Max Depth (ft)	0.6	0.8	0.6	0.7	0.6	
Width/Depth Ratio	15.1	12.9	18.0	14.0	15.1	
Entrenchment Ratio	8.5	8.5	7.9	9.4	9.1	
Low Bank Height (ft)	0.6	0.6	0.6	0.6	0.6	
Bank Height Ratio**	1	1.333	1	1.167	1	
Wetted Perimeter (ft)	6.1	6.3	6.7	5.5	5.6	
Hydraulic Radius (ft)	0.4	0.4	0.3	0.4	0.4	

^{**}MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.

Table 11J. Morphology and Hydraulic Monitoring Summary Lamm UT-2 - Stream and Wetland Restoration Site

Parameter	MY	-00 (2	015)	MY	-01 (20	015)	MY	7-02 (2	016)	MY	-03 (2	017)	MY	7-05 (20	019)	MY	-07 (20	J21)
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Pattern																		
Channel Beltwidth (ft)	21	42	28															
Radius of Curvature (ft)	14	70	21															
Meander Wavelength (ft)	42	84	60															
Meander Width Ratio	3	6	4															
Profile																		
Riffle Length (ft)	5	26	12															
Riffle Slope (ft/ft)	0.84%	4.64%	2.94%															
Pool Length (ft)	4	14	8															
Pool Spacing (ft)	21	56	28															
Additonal Reach Parameters																		
Valley Length (ft)		387			387			387			387			387				
Channel Length (ft)		464			464			464			464			464				
Sinuosity		1.2																
Water Surface Slope (ft/ft)		0.0301																
BF Slope (ft/ft)																		
D50		16.3			16			45.6			43.9			37.9				
D84		110			93			109			103			104				
Rosgen Classification		C/E 3/4			C/E 3/4			C/E 3/4			C/E 3/4			C/E 3/4				

Table 11K. Morphology and Hydraulic Monitoring Summary Lamm UT-3 - Stream and Wetland Restoration Site

Parameter		XS	1 Riff	le (U'	Γ3)			X	S 2 Po	ol (UT	3)			XS	3 Riff	le (U	Γ3)			XS	S 4 Poo	ol (UT	3)			XS	5 Riff	le (U'	Γ3)	
Dimension	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7
BF Width (ft)	7.3	7.1	7.2	7.2	6.5		9.7	11.6	10.7	10.2	12.4		7.6	7.6	7.1	6.5	6.6		10.4	11.2	10.8	11.1	10.8		6.9	6.0	6.0	5.8	5.8	
Floodprone Width (ft)	50.0	50.0	50.0	50.0	50.0								50.0	50.0	50.0	50.0	50.0								50.0	50.0	50.0	50.0	50.0	
BF Cross Sectional Area (ft2)	2.4	2.4	2.6	2.6	2.6		5.9	5.6	5.5	4.8	4.8		2.5	2.9	2.6	2.0	2.0		7.5	7.1	6.6	6.2	6.2		3.1	4.2	4.1	4.0	4.0	
BF Mean Depth (ft)	0.3	0.3	0.4	0.4	0.4		0.6	0.5	0.5	0.5	0.4		0.3	0.4	0.4	0.3	0.3		0.7	0.6	0.6	0.6	0.6		0.4	0.7	0.7	0.7	0.7	
BF Max Depth (ft)	0.5	0.7	0.7	0.5	0.8		1.0	1.0	1.1	0.9	0.9		0.5	0.8	0.7	0.6	0.6		1.2	1.3	1.4	1.4	1.4		0.8	1.2	1.2	1.1	1.1	
Width/Depth Ratio	22.2	21.0	19.9	19.9	16.3								23.1	19.9	19.4	21.1	21.8								15.4	8.6	8.8	8.4	8.4	
Entrenchment Ratio	6.8	7.0	6.9	6.9	7.7								6.6	6.6	7.0	7.7	7.6								7.2	8.3	8.3	8.6	8.6	
Low Bank Height (ft)	0.5	0.5	0.5	0.5	0.8		1	1	1	1	0.9		0.5	0.5	0.5	0.5	0.5		1.2	1.2	1.2	1.2	1.4		0.8	0.8	0.8	0.8	1	
Bank Height Ratio**	1	1.4	1.4	1	1								1	1.6	1.4	1.2	<1								1	1.5	1.5	1.375	<1	
Wetted Perimeter (ft)	7.4	7.3	7.4	7.5	6.7		10.0	11.9	11.2	10.5	12.7		7.7	7.8	7.6	7.4	6.9		10.8	12.1	11.6	11.8	11.5		7.1	6.9	7.6	6.8	6.3	
Hydraulic Radius (ft)	0.3	0.3	0.4	0.3	0.4		0.6	0.5	0.5	0.5	0.4		0.3	0.4	0.3	0.3	0.3		0.7	0.6	0.6	0.5	0.5		0.4	0.6	0.5	0.6	0.6	

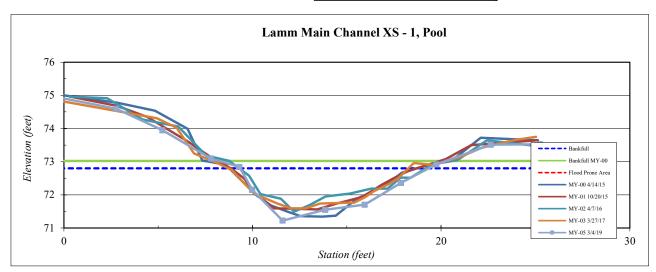
Parameter		XS	6 Riff	le (U'l	Г 3)			XS 7 Pool (UT 3)			XS 8 Riffle (UT 3)				XS 9 Riffle (UT 3)					XS 10 Pool (UT 3)										
Dimension	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7
BF Width (ft)	6.9	6.8	6.3	6.6	7.0		6.8	6.7	7.0	6.9	7.6		6.3	6.0	5.9	7.0	6.3		7.9	7.3	7.0	4.1	4.9		7.8	8.4	6.8	5.7	5.4	
Floodprone Width (ft)	50.0	50.0	50.0	50.0	50.0					-			50.0	50.0	50.0	50.0	50.0		50.0	50.0	50.0	50.0	10.0							
BF Cross Sectional Area (ft2)	2.8	3.0	2.6	2.3	2.3		7.1	8.7	8.9	9.9	9.9		2.0	2.3	2.3	2.5	2.5		2.5	2.6	3.1	1.8	1.8		5.0	3.7	3.3	3.4	3.4	
BF Mean Depth (ft)	0.4	0.4	0.4	0.3	0.3		1.0	1.3	1.3	1.4	1.3		0.3	0.4	0.4	0.4	0.4		0.3	0.4	0.4	0.4	0.4		0.6	0.4	0.5	0.6	0.6	
BF Max Depth (ft)	0.6	0.8	0.7	0.5	0.5		1.7	2.1	2.4	2.3	2.2		0.4	0.6	0.7	0.6	0.6		0.5	0.7	0.9	0.8	0.5		1.0	0.9	0.9	1.0	0.9	
Width/Depth Ratio	17.0	15.4	15.3	18.9	21.3								19.8	15.7	15.1	19.6	15.9		25.0	20.5	15.8	9.3	13.3							
Entrenchment Ratio	7.2	7.4	7.9	7.6	7.1								7.9	8.3	8.5	7.1	7.9		6.3	6.8	7.1	12.2	2.0							
Low Bank Height (ft)	0.6	0.6	0.6	0.6	0.4		1.7	1.7	1.7	1.7	2.3		0.4	0.4	0.4	0.4	0.7		0.5	0.5	0.5	0.5	0.6		1	1	1	1	0.9	
Bank Height Ratio**	1	1.333	1.167	<1	<1								1	1.5	1.75	1.5	1.167		1	1.4	1.8	1.6	1.2							
Wetted Perimeter (ft)	7.2	7.1	6.7	6.8	7.2		7.8	8.4	9.4	8.8	9.2		6.4	6.2	6.5	7.4	6.4		8.1	7.5	7.6	4.4	5.1		8.3	8.7	7.2	6.2	5.9	
Hydraulic Radius (ft)	0.4	0.4	0.4	0.3	0.3		0.9	1.0	0.9	1.1	1.1		0.3	0.4	0.4	0.3	0.4		0.3	0.3	0.4	0.4	0.4		0.6	0.4	0.5	0.5	0.6	

Parameter		XS 11 Riffle (UT 3)				XS 12 Riffle (UT 3)					XS 13 Pool (UT 3)					XS 14 Riffle (UT 3)								
Dimension	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7
BF Width (ft)	6.3	7.2	7.0	4.6	5.2		7.9	6.6	6.7	4.2	6.6		7.0	5.5	5.4	5.1	4.9		8.6	8.7	8.0	8.3	10.1	
Floodprone Width (ft)	50.0	50.0	50.0	50.0	50.0		50.0	50.0	50.0	50.0	50.0				-	-	-		50.0	50.0	50.0	50.0	50.0	
BF Cross Sectional Area (ft2)	2.5	3.8	3.7	2.3	2.3		2.6	3.0	2.9	2.7	2.7		4.1	3.4	2.9	2.6	2.6		2.8	3.4	3.4	3.0	3.0	
BF Mean Depth (ft)	0.4	0.5	0.5	0.5	0.4		0.3	0.5	0.4	0.6	0.4		0.6	0.6	0.5	0.5	0.5		0.3	0.4	0.4	0.4	0.3	
BF Max Depth (ft)	0.6	1.2	1.1	0.9	0.7		0.6	0.9	1.1	1.2	0.9		1.2	0.9	0.8	0.8	0.8		0.7	0.9	0.9	0.8	0.9	
Width/Depth Ratio	15.9	13.6	13.2	9.2	11.8		24.0	14.5	15.5	6.5	16.1								26.4	22.3	18.8	23.0	34.0	
Entrenchment Ratio	7.9	6.9	7.1	10.9	9.6		6.3	7.6	7.5	11.9	7.6								5.8	5.7	6.3	6.0	5.0	
Low Bank Height (ft)	0.6	0.6	0.6	0.6	0.9		0.6	0.6	0.6	0.6	0.7		1.2	1.2	1.2	1.2	1.1		0.7	0.7	0.7	0.7	0.7	
Bank Height Ratio**	1	2	1.833	1.5	1.286		1	1.5	1.833	2	<1								1	1.286	1.286	1.143	<1	
Wetted Perimeter (ft)	6.5	7.7	7.7	5.2	5.6		8.1	6.9	7.6	5.1	6.9		8.2	5.9	5.8	5.7	5.3		8.8	9.3	8.3	8.5	10.6	
Hydraulic Radius (ft)	0.4	0.5	0.5	0.4	0.4		0.3	0.4	0.4	0.5	0.4		0.5	0.6	0.5	0.5	0.5		0.3	0.4	0.4	0.4	0.3	

 $^{**}MY0-3 \ BHR \ were \ calculated \ using \ DMS \ method \ of \ "Dmax \ year \ x \ /Dmax \ year \ 0". \ MY5-7 \ were \ calculated \ using \ DMS \ method \ of \ area \ best \ fit.$

Table 11L. Morphology and Hydraulic Monitoring Summary Lamm UT-3 - Stream and Wetland Restoration Site

Lamin C1-3 - Stream and			_			MY-02 (2016)			3.637.02 (2015)									
Parameter	MY	MY-00 (2015)		MY	-01 (2	015)	MY	7-02 (2	016)	MY-03 (2017)			MY	7-05 (20	019)	MY	-07 (20)21)
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Pattern																		
Channel Beltwidth (ft)	21	42	28															
Radius of Curvature (ft)	14	70	21															
Meander Wavelength (ft)	42	84	60															
Meander Width Ratio	3	6	4															
Profile																		
Riffle Length (ft)	6	66	21															
Riffle Slope (ft/ft)	0.82%	6.50%	3.13%															
Pool Length (ft)	4	14	8															
Pool Spacing (ft)	21	56	28															
Additonal Reach Parameters																		
Valley Length (ft)		846			846			846			846			846				
Channel Length (ft)		1,015			1,015			1,015			1,015			1,015				
Sinuosity		1.2																
Water Surface Slope (ft/ft)		0.0319																
BF Slope (ft/ft)																		
D50	8.7		17.4			6.9		12.2			12.8							
D84		87			95			29		54			60					
Rosgen Classification		C/E 3/4	1		C/E 3/4	1		C/E 3/4	1		C/E 3/4	ļ.		C/E 3/4				

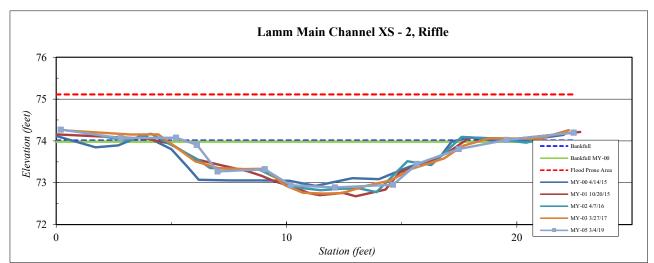

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 1, Pool
Feature	Pool
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
-0.2	74.9
2.8	74.6
5.2	73.9
7.8	73.1
9.3	72.8
10.0	72.2
11.6	71.2
13.9	71.5
15.9	71.7
17.9	72.4
19.7	72.9
22.6	73.5
25.2	73.5
	İ

CYTHE CAN DELEGATION AND A	
SUMMARY DATA	
Bankfull Elevation:	72.8
Bankfull Cross-Sectional Area:	9.4
Bankfull Width:	10.0
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.6
Mean Depth at Bankfull:	0.9
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

J 1

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 2, Riffle
Feature	Riffle
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
0.2	74.27
2.8	74.06
5.2	74.08
6.1	73.91
7.0	73.27
9.1	73.32
10.2	72.94
12.1	72.89
14.6	72.95
15.7	73.45
17.5	73.81
19.6	74.02
22.5	74.20

SUMMARY DATA	
Bankfull Elevation:	74.0
Bankfull Cross-Sectional Area:	9.5
Bankfull Width:	13.9
Flood Prone Area Elevation:	75.1
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.1
Mean Depth at Bankfull:	0.7
W / D Ratio:	20.3
Entrenchment Ratio:	6.5
Bank Height Ratio:	1.0

Stream	Type	C/E

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 3, Riffle
Feature	Riffle
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

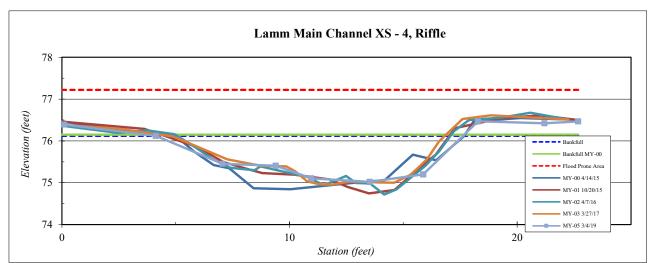
Station	Elevation
0.3	75.06
3.1	74.97
4.1	74.80
6.0	74.23
6.6	73.80
8.0	73.54
9.8	73.53
11.5	73.93
12.5	74.39
15.6	74.73
19.5	74.94
21.8	75.07

SUMMARY DATA	
Bankfull Elevation:	74.8
Bankfull Cross-Sectional Area:	8.1
Bankfull Width:	12.8
Flood Prone Area Elevation:	76.1
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.3
Mean Depth at Bankfull:	0.6
W / D Ratio:	20.2
Entrenchment Ratio:	7.0
Bank Height Ratio:	1.0

Stream Type C/E	Stream Type	C/E
-----------------	-------------	-----

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.

Cross section not monitored during year 1 (2015) due to hornets nest at cross section location.

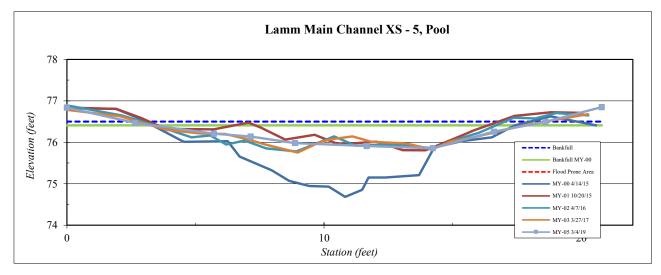

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 4, Riffle
Feature	Riffle
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
0.1	76.39
4.1	76.12
7.1	75.45
9.4	75.41
11.0	75.11
13.5	75.02
15.9	75.20
18.3	76.47
21.2	76.42
22.7	76.47

SUMMARY DATA	
Bankfull Elevation:	76.1
Bankfull Cross-Sectional Area:	9.4
Bankfull Width:	13.3
Flood Prone Area Elevation:	77.2
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.1
Mean Depth at Bankfull:	0.7
W / D Ratio:	18.8
Entrenchment Ratio:	6.8
Bank Height Ratio:	1.0

Stream Type	C/E

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 5, Pool
Feature	Pool
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

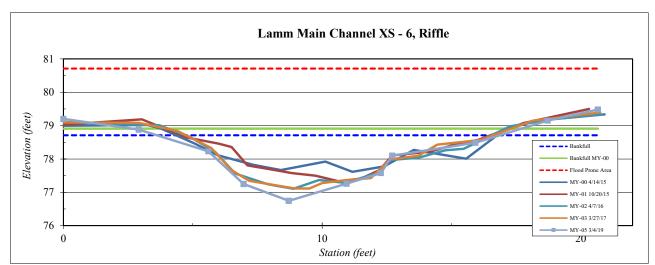
Station	Elevation
0.0	76.8
2.7	76.5
5.7	76.2
7.1	76.1
8.9	76.0
11.7	75.9
14.2	75.9
16.6	76.3
18.6	76.5
20.8	76.8

SUMMARY DATA	
Bankfull Elevation:	76.5
Bankfull Cross-Sectional Area:	7.6
Bankfull Width:	17.3
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.4
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	<1

J 1

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.

Sediment deposition in pool appears natural and is not expected to lead to instability.


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 6, Riffle
Feature	Riffle
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

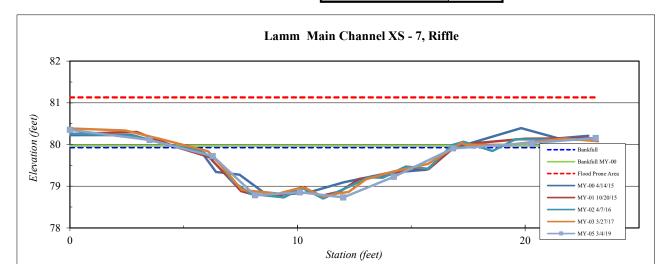
Station	Elevation
0.0	79.20
2.9	78.88
5.6	78.23
7.0	77.25
8.7	76.75
10.9	77.26
12.3	77.58
12.7	78.10
15.9	78.49
18.7	79.15
20.7	79.48

SUMMARY DATA	
Bankfull Elevation:	78.7
Bankfull Cross-Sectional Area:	12.1
Bankfull Width:	13.3
Flood Prone Area Elevation:	80.7
Flood Prone Width:	90.0
Max Depth at Bankfull:	2.0
Mean Depth at Bankfull:	0.9
W / D Ratio:	14.6
Entrenchment Ratio:	6.8
Bank Height Ratio:	<1

Stream Type	C/E

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.

Channel constructed in lake bed, with stabilization occurring in years 1 through 5 monitoring. No problems visible in this reach.

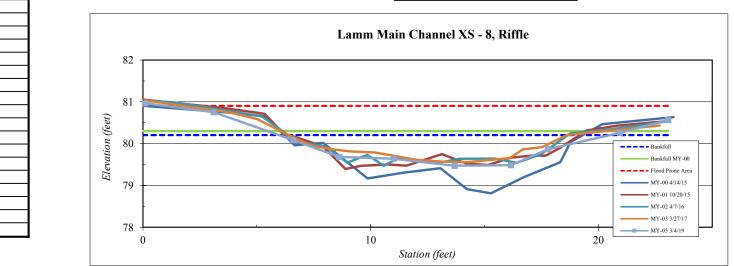

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 7, Riffle
Feature	Riffle
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
0.0	80.35
3.5	80.11
6.3	79.72
8.1	78.78
10.1	78.85
12.0	78.73
14.2	79.23
16.8	79.91
20.3	80.04
23.1	80.16

SUMMARY DATA	
Bankfull Elevation:	79.9
Bankfull Cross-Sectional Area:	8.8
Bankfull Width:	12.7
Flood Prone Area Elevation:	81.1
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.2
Mean Depth at Bankfull:	0.7
W / D Ratio:	18.3
Entrenchment Ratio:	7.1
Bank Height Ratio:	1.0

31

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 8, Riffle
Feature	Riffle
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

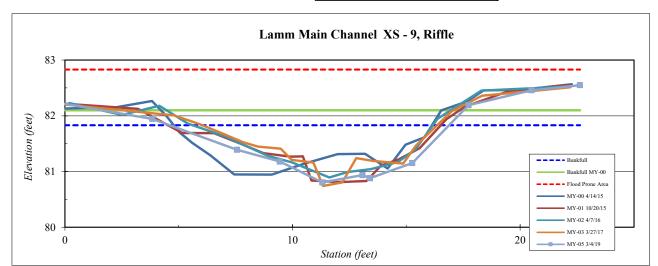
Station	Elevation
0.1	80.97
3.1	80.75
6.6	80.08
8.6	79.68
11.0	79.64
13.7	79.47
16.2	79.49
17.8	79.87
21.0	80.26
23.1	80.57

SUMMARY DATA	
Bankfull Elevation:	80.2
Bankfull Cross-Sectional Area:	6.8
Bankfull Width:	14.5
Flood Prone Area Elevation:	80.9
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.5
W / D Ratio:	30.9
Entrenchment Ratio:	6.2
Bank Height Ratio:	1.1

Stream Type C/E	Stream Type	C/E
-----------------	-------------	-----

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit. Sediment transport appears to be natural and has stabilized during years 1 to 5 monitoring.

No problems appear to be occurring in this reach.


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 9, Riffle
Feature	Riffle
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

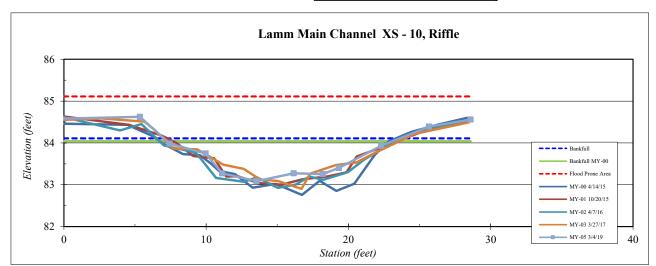
Station	Elevation
-0.2	82.23
3.8	81.95
7.6	81.39
9.4	81.18
11.3	80.80
13.1	80.94
13.4	80.88
15.3	81.15
17.7	82.19
20.5	82.46
22.6	82.55

SUMMARY DATA	
Bankfull Elevation:	81.8
Bankfull Cross-Sectional Area:	7.3
Bankfull Width:	12.3
Flood Prone Area Elevation:	82.8
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.0
Mean Depth at Bankfull:	0.6
W / D Ratio:	20.7
Entrenchment Ratio:	7.3
Bank Height Ratio:	1.1

Stream Type C/E	Stream Type	C/E
-----------------	-------------	-----

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.

No problems have been noted in this reach. Minor alterations in shallow channels may result in large discrepancies including elevated BHR.

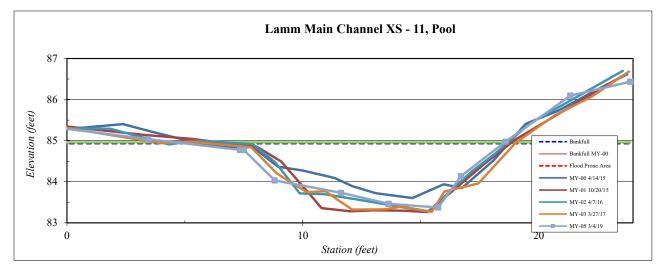

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 10, Riffle
Feature	Riffle
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
-0.1	84.58
5.3	84.62
7.4	83.98
10.0	83.75
11.1	83.27
13.5	83.09
16.1	83.27
18.2	83.25
19.3	83.40
22.3	83.93
25.7	84.39
28.6	84.56

SUMMARY DATA	
Bankfull Elevation:	84.1
Bankfull Cross-Sectional Area:	10.1
Bankfull Width:	16.6
Flood Prone Area Elevation:	85.1
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.0
Mean Depth at Bankfull:	0.6
W / D Ratio:	27.3
Entrenchment Ratio:	5.4
Bank Height Ratio:	<1

Stream Type C/E	Stream Type	C/E
-----------------	-------------	-----

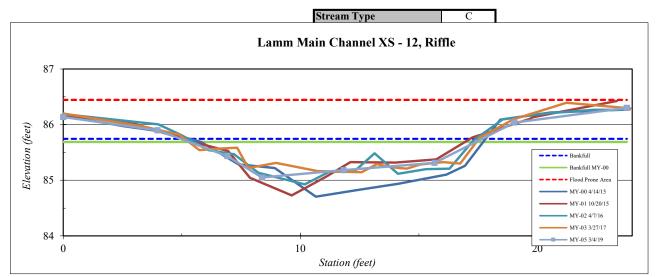
**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 11, Pool
Feature	Pool
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
-0.3	85.3
3.4	85.0
7.3	84.8
7.5	84.8
8.8	84.0
11.6	83.7
13.6	83.5
15.7	83.4
16.7	84.1
18.6	85.0
21.3	86.1
23.9	86.4

SUMMARY DATA	
Bankfull Elevation:	84.9
Bankfull Cross-Sectional Area:	11.6
Bankfull Width:	13.6
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.6
Mean Depth at Bankfull:	0.9
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	<1

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.


Some downcutting occurred just after asbuilt but has stabilized during years 1 through 5.

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 12, Riffle
Feature	Riffle
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

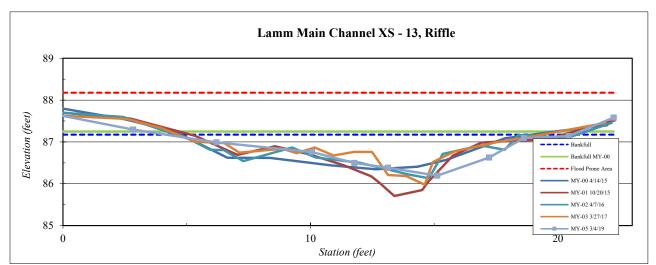
Station	Elevation
0.0	86.14
4.0	85.90
6.9	85.44
8.4	85.05
11.8	85.18
15.7	85.31
19.0	86.04
23.8	86.30

SUMMARY DATA	
Bankfull Elevation:	85.7
Bankfull Cross-Sectional Area:	5.5
Bankfull Width:	12.7
Flood Prone Area Elevation:	86.4
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.4
W / D Ratio:	29.3
Entrenchment Ratio:	7.1
Bank Height Ratio:	1.3

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.

Elevated BHR does not indicate instability along this reach.

Minor alterations in shallow channels may result in large discrepancies including elevated BHR.


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 13, Riffle
Feature	Riffle
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
-0.8	87.72
2.8	87.30
6.2	86.99
10.1	86.76
11.8	86.49
13.1	86.38
15.1	86.19
17.2	86.62
18.6	87.09
20.4	87.13
22.3	87.58

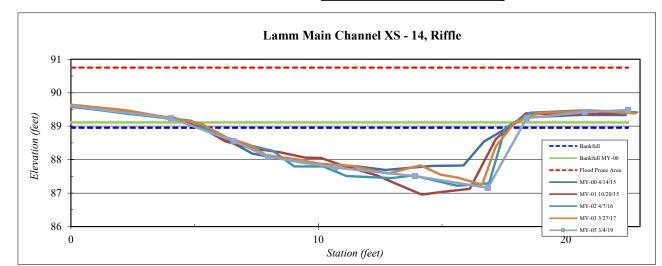
SUMMARY DATA	
Bankfull Elevation:	87.2
Bankfull Cross-Sectional Area:	7.2
Bankfull Width:	16.4
Flood Prone Area Elevation:	88.2
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.0
Mean Depth at Bankfull:	0.4
W / D Ratio:	37.4
Entrenchment Ratio:	5.5
Bank Height Ratio:	<1

Stream T	Гуре	C

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.

Channel constructed in lake bed. Unconsolidated materials are forming a new channel within the constructed channel.

Depth decreased during MY-01-03 and is stabilizing.


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 14, Riffle
Feature	Riffle
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
-0.6	89.66
4.1	89.24
6.6	88.56
8.0	88.08
10.7	87.76
13.9	87.51
16.9	87.16
18.4	89.24
20.8	89.42
22.5	89.49

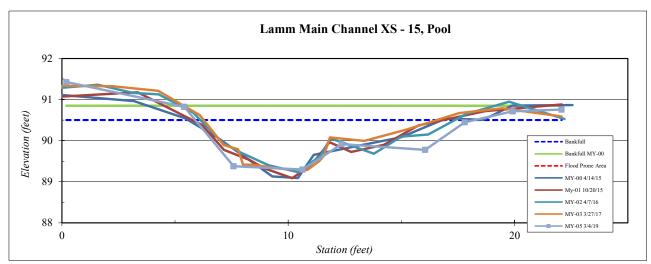
SUMMARY DATA	
Bankfull Elevation:	89.0
Bankfull Cross-Sectional Area:	14.2
Bankfull Width:	13.1
Flood Prone Area Elevation:	90.8
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.8
Mean Depth at Bankfull:	1.1
W / D Ratio:	12.1
Entrenchment Ratio:	6.9
Bank Height Ratio:	1.2

Stream Type C/E

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.

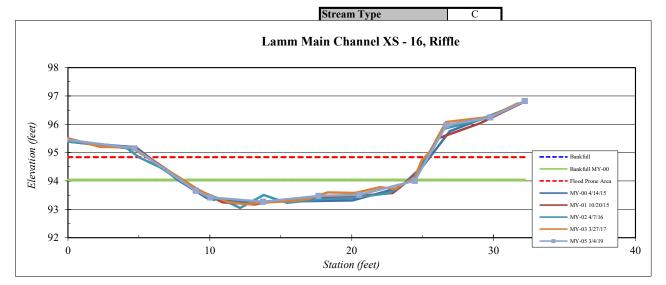
Channel constructed in lake bed. Unconsolidated materials are forming a new channel within the constructed channel.

Depth is decreasing since MY-01 and is stabilizing in MY-02-05.


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 15, Pool
Feature	Pool
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
0.2	91.4
5.4	90.8
7.6	89.4
10.6	89.3
12.4	89.9
16.0	89.8
17.8	90.4
19.9	90.7
22.1	90.8

SUMMARY DATA	
Bankfull Elevation:	90.5
Bankfull Cross-Sectional Area:	9.1
Bankfull Width:	12.3
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.2
Mean Depth at Bankfull:	0.7
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0


**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.

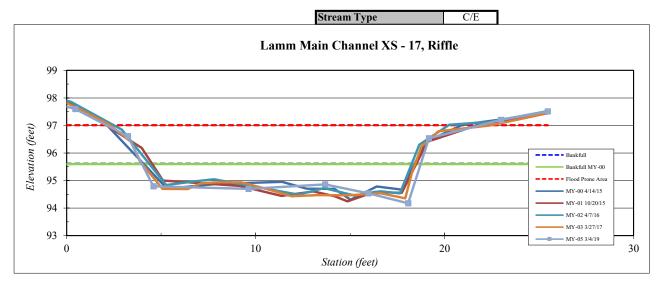
Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 16, Riffle
Feature	Riffle
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
-0.1	95.45
4.7	95.15
9.0	93.66
10.0	93.42
13.7	93.27
17.7	93.47
20.5	93.51
24.4	94.01
26.7	95.97
29.8	96.24
32.2	96.82

SUMMARY DATA	
Bankfull Elevation:	94.0
Bankfull Cross-Sectional Area:	8.6
Bankfull Width:	16.6
Flood Prone Area Elevation:	94.8
Flood Prone Width:	20.0
Max Depth at Bankfull:	0.8
Mean Depth at Bankfull:	0.5
W / D Ratio:	32.0
Entrenchment Ratio:	1.2
Bank Height Ratio:	2.38

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.

Enhancement Level II Reach. BHR varies through this reach; however, the reach is stable.


Minor alterations in shallow channels may result in large discrepancies including elevated BHR.

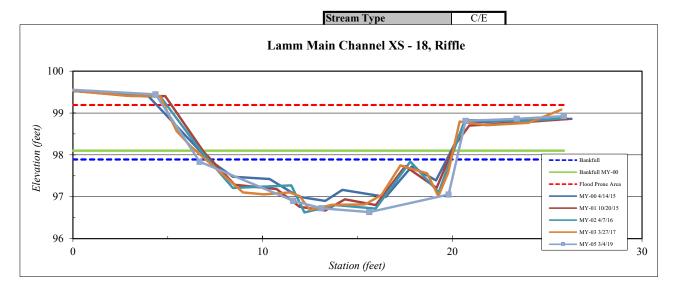
Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 17, Riffle
Feature	Riffle
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

Station	Elevation	
-3.3	98.33	
0.5	97.59	
3.2	96.61	
4.6	94.79	
9.6	94.69	
13.7	94.86	
16.0	94.53	
18.1	94.18	
19.2	96.53	
23.0	97.20	
25.5	97.51	

SUMMARY DATA	
Bankfull Elevation:	95.6
Bankfull Cross-Sectional Area:	13.2
Bankfull Width:	14.8
Flood Prone Area Elevation:	97.0
Flood Prone Width:	19.0
Max Depth at Bankfull:	1.4
Mean Depth at Bankfull:	0.9
W / D Ratio:	16.6
Entrenchment Ratio:	1.3
Bank Height Ratio:	1.6
1	

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.

Enhancement Level II Reach. BHR varies through this reach; however, the reach is stable.


Minor alterations in shallow channels may result in large discrepancies including elevated BHR.

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 18, Riffle
Feature	Riffle
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

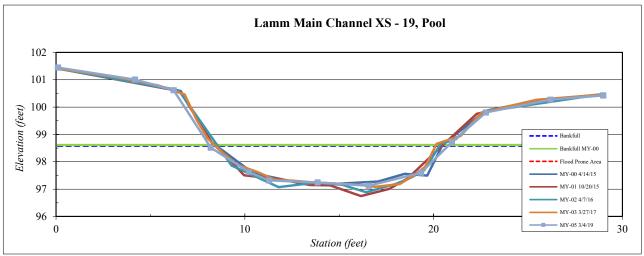
Station	Elevation
-0.1	99.56
4.4	99.45
6.7	97.83
11.6	96.90
13.1	96.73
15.6	96.63
19.8	97.05
20.7	98.81
23.4	98.86
25.9	98.93

SUMMARY DATA	
Bankfull Elevation:	97.9
Bankfull Cross-Sectional Area:	11.8
Bankfull Width:	13.6
Flood Prone Area Elevation:	99.2
Flood Prone Width:	31.0
Max Depth at Bankfull:	1.3
Mean Depth at Bankfull:	0.9
W / D Ratio:	15.7
Entrenchment Ratio:	2.3
Bank Height Ratio:	1.7

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.

Enhancement Level II Reach. BHR varies through this reach; however, the reach is stable.

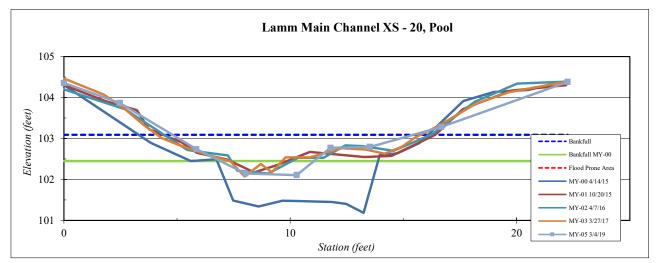
Minor alterations in shallow channels may result in large discrepancies including elevated BHR.


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 19, Pool
Feature	Pool
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
0.1	101.4
4.2	101.0
6.2	100.6
8.2	98.5
10.2	97.6
11.3	97.3
13.9	97.2
16.6	97.1
19.3	97.6
21.0	98.7
22.8	99.8
26.2	100.3
29.0	100.4

SUMMARY DATA	
Bankfull Elevation:	98.6
Bankfull Cross-Sectional Area:	13.4
Bankfull Width:	12.6
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.5
Mean Depth at Bankfull:	1.1
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.1

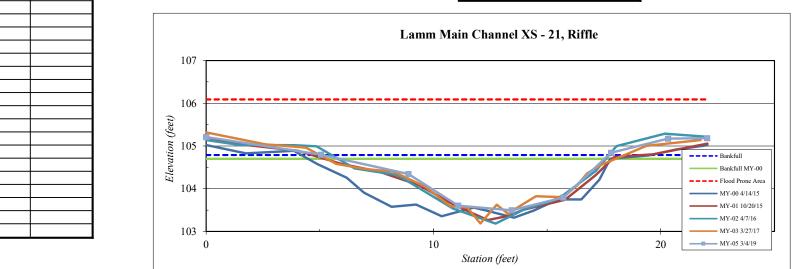
**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit. Enhancement Level II Reach. No problems have been noted in this reach. Minor alterations in shallow channels may result in large discrepancies including elevated BHR.


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 20, Pool
Feature	Pool
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
0.0	104.4
2.5	103.9
5.9	
	102.7
8.0	102.1
10.3	102.1
11.8	102.8
13.5	102.8
16.7	103.3
22.3	104.4

SUMMARY DATA	
Bankfull Elevation:	103.1
Bankfull Cross-Sectional Area:	5.6
Bankfull Width:	10.6
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.0
Mean Depth at Bankfull:	0.5
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.2

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit. Sediment has aggraded behind a bedrock sill. Sediment has been stable MY-01 through MY-05.

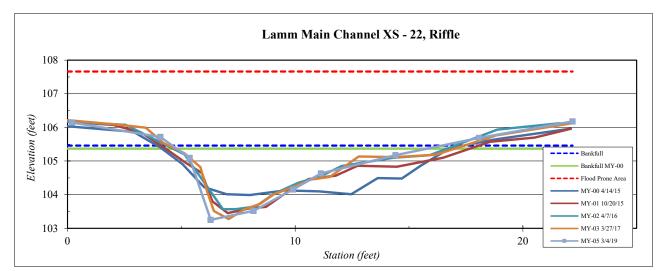

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 21, Riffle
Feature	Riffle
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
0.0	105.21
5.0	104.80
8.9	104.34
11.1	103.60
13.4	103.50
15.7	103.79
17.8	104.84
20.3	105.17
22.0	105.18

SUMMARY DATA	
Bankfull Elevation:	104.8
Bankfull Cross-Sectional Area:	9.1
Bankfull Width:	12.6
Flood Prone Area Elevation:	106.1
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.3
Mean Depth at Bankfull:	0.7
W / D Ratio:	17.4
Entrenchment Ratio:	7.1
Bank Height Ratio:	1.00

Stream Type	C/E

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 22, Riffle
Feature	Riffle
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

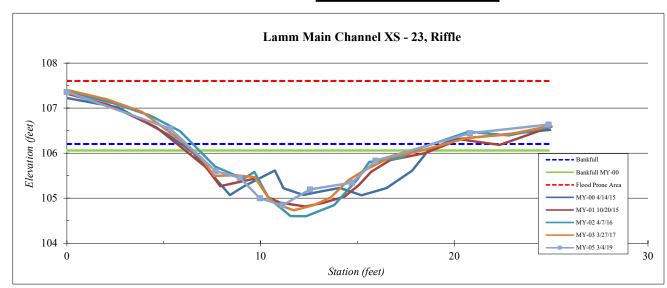
Station	Elevation
0.2	106.14
4.1	105.72
5.4	105.09
6.3	103.25
8.2	103.52
9.9	104.16
11.1	104.63
14.4	105.18
18.1	105.69
22.2	106.18

SUMMARY DATA	
Bankfull Elevation:	105.5
Bankfull Cross-Sectional Area:	11.5
Bankfull Width:	11.8
Flood Prone Area Elevation:	107.7
Flood Prone Width:	90.0
Max Depth at Bankfull:	2.2
Mean Depth at Bankfull:	1.0
W / D Ratio:	12.1
Entrenchment Ratio:	7.6
Bank Height Ratio:	1.1

Stream Type	C/E

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.

Overall channel area has decreased. Sediment mobilization has resulted in minor downcutting, which has stabilized over the past 5 years. No problems are visible in this reach.


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 23, Riffle
Feature	Riffle
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

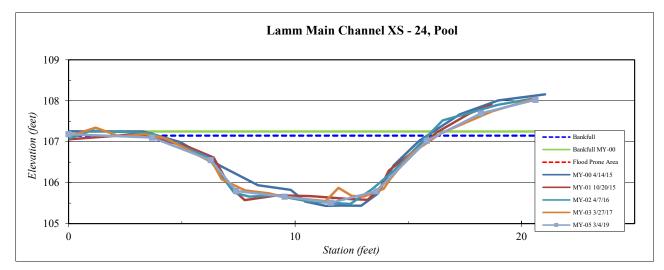
Station	Elevation
0.0	107.36
5.3	106.54
7.7	105.60
8.9	105.45
10.0	105.00
11.1	104.84
12.6	105.20
14.7	105.35
15.9	105.83
20.8	106.44
24.9	106.63

SUMMARY DATA	
Bankfull Elevation:	106.2
Bankfull Cross-Sectional Area:	8.8
Bankfull Width:	12.7
Flood Prone Area Elevation:	107.6
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.4
Mean Depth at Bankfull:	0.7
W / D Ratio:	18.3
Entrenchment Ratio:	7.1
Bank Height Ratio:	1.1

Stream Type	C/E

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.

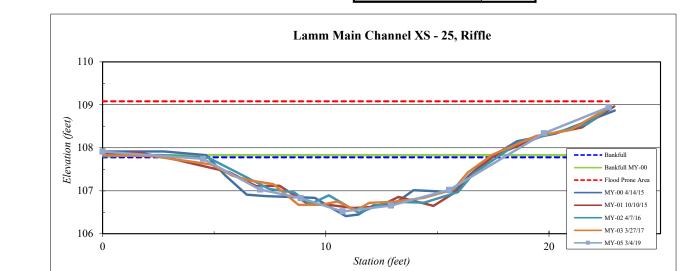
Overall channel area has remained constant. Sediment mobilization has resulted in minor downcutting, which has stabilized over the past 5 years. No problems are visible in this reach.


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 24, Pool
Feature	Pool
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
0.0	107.2
3.7	107.1
6.3	106.6
7.4	105.8
9.5	105.7
11.6	105.5
13.6	105.8
15.8	107.0
18.2	107.7
20.6	108.0

SUMMARY DATA	
Bankfull Elevation:	107.2
Bankfull Cross-Sectional Area:	12.9
Bankfull Width:	14.7
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.6
Mean Depth at Bankfull:	0.9
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.

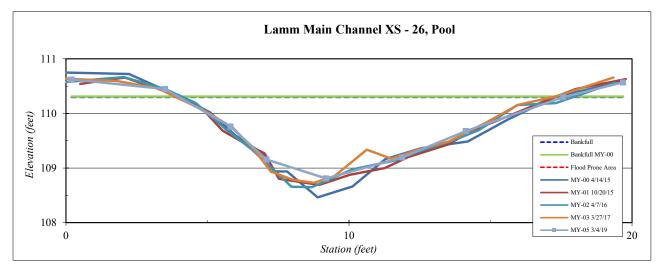

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 25, Riffle
Feature	Riffle
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

Elevation
107.91
107.74
107.03
106.83
106.52
106.66
107.02
108.34
108.94

SUMMARY DATA	
Bankfull Elevation:	107.8
Bankfull Cross-Sectional Area:	10.6
Bankfull Width:	14.4
Flood Prone Area Elevation:	109.1
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.3
Mean Depth at Bankfull:	0.7
W / D Ratio:	19.6
Entrenchment Ratio:	6.3
Bank Height Ratio:	<1

St	ream Type	C/E

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 26, Pool
Feature	Pool
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
0.2	110.6
3.5	110.4
5.8	109.8
7.1	109.2
9.2	108.8
11.9	109.2
14.1	109.7
17.6	110.3
19.7	110.6

SUMMARY DATA	
Bankfull Elevation:	110.3
Bankfull Cross-Sectional Area:	10.8
Bankfull Width:	13.6
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.5
Mean Depth at Bankfull:	0.8
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.

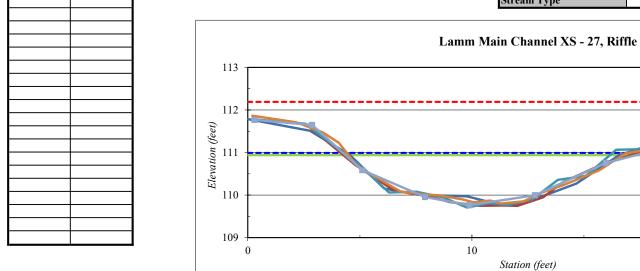
Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 27, Riffle
Feature	Riffle
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

~	777
Station	Elevation
0.3	111.77
2.9	111.65
5.1	110.59
7.9	109.95
9.9	109.77
12.8	110.00
16.0	110.76
18.2	111.06
20.2	111.29

SUMMARY DATA	
Bankfull Elevation:	111.0
Bankfull Cross-Sectional Area:	9.8
Bankfull Width:	13.5
Flood Prone Area Elevation:	112.2
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.2
Mean Depth at Bankfull:	0.7
W / D Ratio:	18.6
Entrenchment Ratio:	6.7
Bank Height Ratio:	1.1

--- Bankfull

Bankfull MY-00


Flood Prone Area

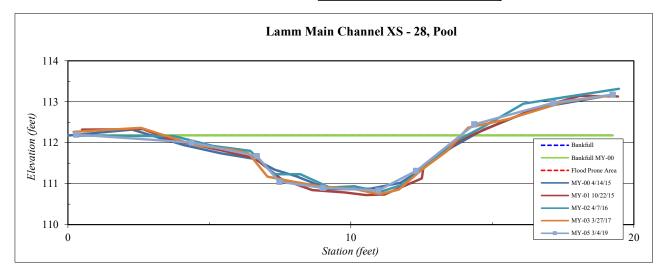
MY-00 4/14/15
MY-01 10/20/15
MY-02 4/7/16
MY-03 3/27/17

MY-05 3/4/19

20

Stream Type C/E

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.

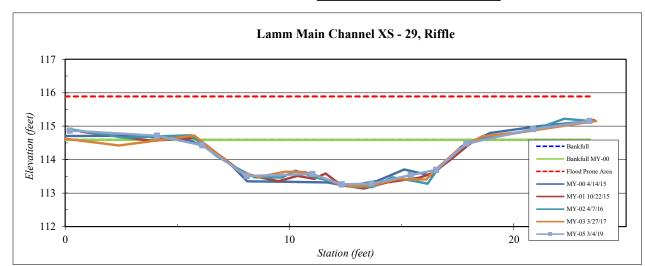

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 28, Pool
Feature	Pool
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
0.3	112.2
4.4	112.0
6.7	111.7
7.5	111.0
9.0	110.9
11.0	110.8
12.3	111.3
14.4	112.4
17.2	113.0
19.3	113.2

SUMMARY DATA	
Bankfull Elevation:	112.2
Bankfull Cross-Sectional Area:	8.3
Bankfull Width:	13.1
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.3
Mean Depth at Bankfull:	0.6
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.1

J 1

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.

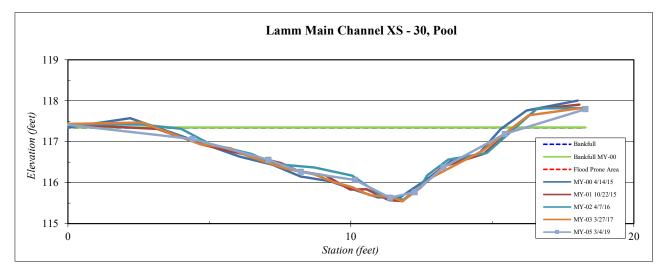

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 29, Riffle
Feature	Riffle
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

Elevation
114.87
114.71
114.43
113.51
113.57
113.26
113.28
113.54
113.70
114.48
114.91
115.15

SUMMARY DATA	
Bankfull Elevation:	114.6
Bankfull Cross-Sectional Area:	11.6
Bankfull Width:	13.7
Flood Prone Area Elevation:	115.9
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.3
Mean Depth at Bankfull:	0.8
W / D Ratio:	16.2
Entrenchment Ratio:	6.6
Bank Height Ratio:	<1

Stream Type C/E	Stream Type	C/E
-----------------	-------------	-----

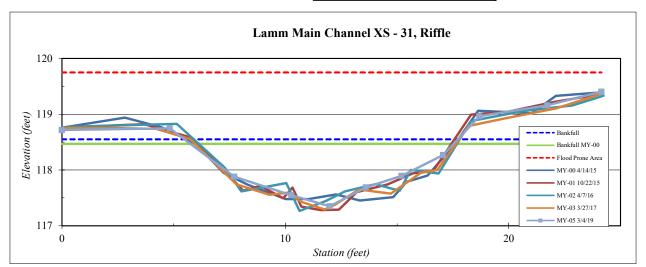
**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 30, Pool
Feature	Pool
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
-0.1	117.4
4.4	117.1
7.1	116.6
8.2	116.3
10.1	116.1
11.4	115.6
12.3	115.8
13.3	116.4
15.4	117.2
18.3	117.8

SUMMARY DATA	
Bankfull Elevation:	117.3
Bankfull Cross-Sectional Area:	11.1
Bankfull Width:	15.3
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.7
Mean Depth at Bankfull:	0.7
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	<1

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 30, Riffle
Feature	Riffle
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

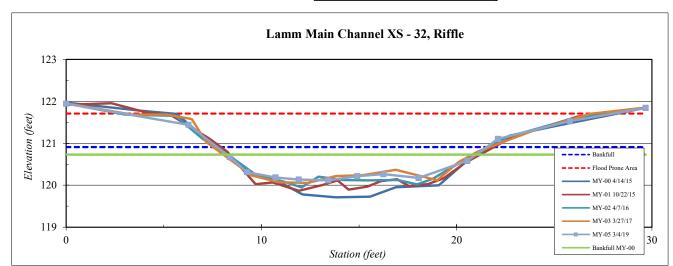
Station	Elevation
0.0	118.72
4.8	118.75
7.7	117.88
10.3	117.55
12.0	117.35
13.6	117.69
15.2	117.89
17.1	118.27
18.7	118.96
21.7	119.16
24.1	119.40

SUMMARY DATA	
Bankfull Elevation:	118.6
Bankfull Cross-Sectional Area:	8.6
Bankfull Width:	12.2
Flood Prone Area Elevation:	119.8
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.2
Mean Depth at Bankfull:	0.7
W / D Ratio:	17.3
Entrenchment Ratio:	7.4
Bank Height Ratio:	1.2

Stream Type C/E

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.

No problems have been noted in this reach. Minor alterations in shallow channels may result in large discrepancies including elevated BHR.

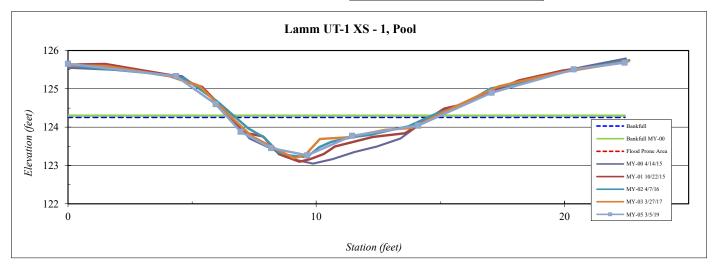

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 32, Riffle
Feature	Riffle
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
0.0	121.94
6.3	121.44
8.4	120.67
9.3	120.31
10.7	120.18
11.9	120.14
13.4	120.12
14.9	120.21
16.3	120.26
18.1	120.17
20.5	120.58
22.1	121.10
25.8	121.53
29.7	121.84

SUMMARY DATA	
Bankfull Elevation:	120.9
Bankfull Cross-Sectional Area:	8.2
Bankfull Width:	13.8
Flood Prone Area Elevation:	121.7
Flood Prone Width:	25.0
Max Depth at Bankfull:	0.8
Mean Depth at Bankfull:	0.6
W / D Ratio:	23.2
Entrenchment Ratio:	1.8
Bank Height Ratio:	1.3

Stream Type C/E	Stream Type	C/E
-----------------	-------------	-----

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.

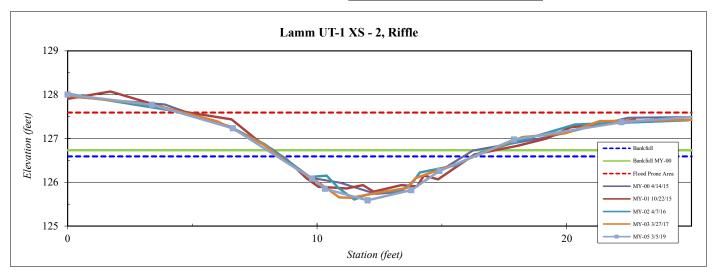

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 1 XS - 1, Pool
Feature	Pool
Date:	3/5/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
0.0	125.7
4.3	125.3
5.9	124.6
7.0	123.9
8.2	123.5
9.6	123.3
11.4	123.8
14.1	124.0
17.1	124.9
20.4	125.5
22.4	125.7
	1

SUMMARY DATA	
Bankfull Elevation:	124.3
Bankfull Cross-Sectional Area:	4.5
Bankfull Width:	8.4
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.0
Mean Depth at Bankfull:	0.5
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.3

Stream Type C/E

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.

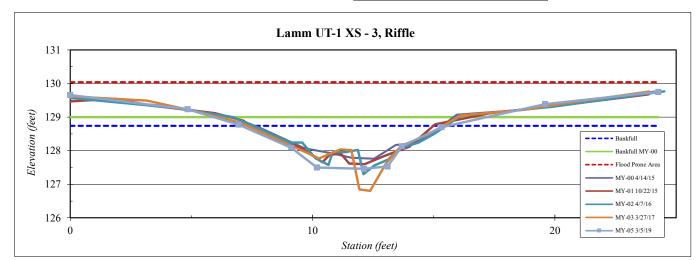

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 1 XS - 2, Riffle
Feature	Riffle
Date:	3/5/2019
Field Crew:	Perkinson, Radecki

ricia Cicw.	
Station	Elevation
0.0	128.00
3.4	127.77
6.6	127.23
9.8	126.08
10.3	125.85
12.0	125.59
13.8	125.82
14.9	126.26
17.9	126.97
22.2	127.37
25.0	127.49

SUMMARY DATA	
Bankfull Elevation:	126.6
Bankfull Cross-Sectional Area:	4.6
Bankfull Width:	7.9
Flood Prone Area Elevation:	127.6
Flood Prone Width:	50.0
Max Depth at Bankfull:	1.0
Mean Depth at Bankfull:	0.6
W / D Ratio:	13.6
Entrenchment Ratio:	6.3
Bank Height Ratio:	1.4

Stream Type C/E	
-------------------	--

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 1 XS - 3, Riffle
Feature	Riffle
Date:	3/5/2019
Field Crew:	Perkinson, Radecki

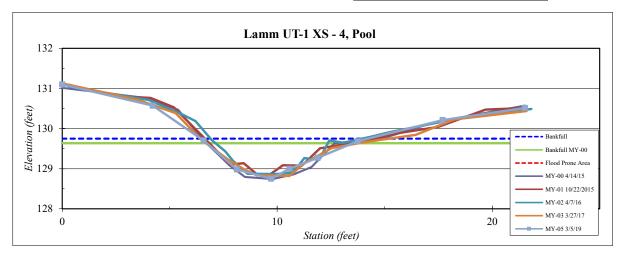
Station	Elevation
0.0	129.66
4.8	129.23
7.0	128.78
9.1	128.09
10.2	127.50
12.1	127.46
13.1	127.53
13.7	128.13
15.3	128.70
19.6	129.39
24.3	129.75
The state of the s	

SUMMARY DATA	
Bankfull Elevation:	128.7
Bankfull Cross-Sectional Area:	6.4
Bankfull Width:	8.5
Flood Prone Area Elevation:	130.0
Flood Prone Width:	50.0
Max Depth at Bankfull:	1.3
Mean Depth at Bankfull:	0.8
W / D Ratio:	11.3
Entrenchment Ratio:	5.9
Bank Height Ratio:	1.0

Stream Type C/E

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.

Elevated BHR results from shallow channel depth. UT 1 appears stable throughout.


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 1 XS - 4, Pool
Feature	Pool
Date:	3/5/2019
Field Crew:	Perkinson, Radecki

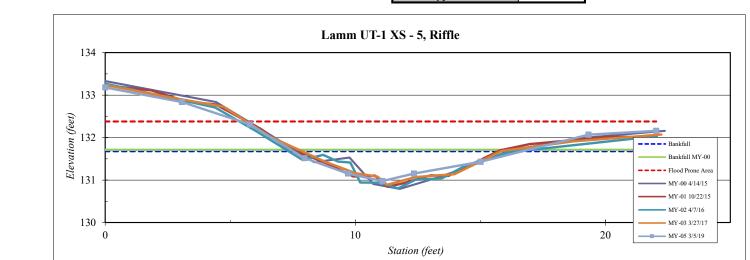
ricia Citw.	
Station	Elevation
0.0	131.10
4.2	130.57
6.6	129.70
8.1	128.98
9.7	128.75
10.6	129.00
11.9	129.27
13.7	129.69
17.7	130.21
21.5	130.51
_	

SUMMARY DATA	
Bankfull Elevation:	129.8
Bankfull Cross-Sectional Area:	4.1
Bankfull Width:	7.8
Flood Prone Area Elevation:	N/A
Flood Prone Width:	N/A
Max Depth at Bankfull:	1.0
Mean Depth at Bankfull:	0.5
W / D Ratio:	N/A
Entrenchment Ratio:	N/A
Bank Height Ratio:	<1

Stream Type C/E

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.

XS-4 was determined to be a pool during MY-05. It was labeled a pool during MY-0 but was mislabeled as a riffle during MY-01 through MY-03.

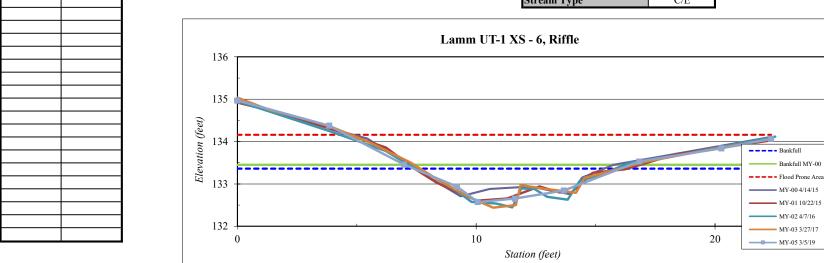

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 1 XS - 5, Riffle
Feature	Riffle
Date:	3/5/2019
Field Crew:	Perkinson, Radecki

Elevation
133.18
132.84
132.31
131.52
131.16
130.98
131.16
131.43
132.07
132.16

SUMMARY DATA	
Bankfull Elevation:	131.7
Bankfull Cross-Sectional Area:	3.5
Bankfull Width:	9.2
Flood Prone Area Elevation:	132.4
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.4
W / D Ratio:	24.2
Entrenchment Ratio:	5.4
Bank Height Ratio:	1.6

Stream Type C/E

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.

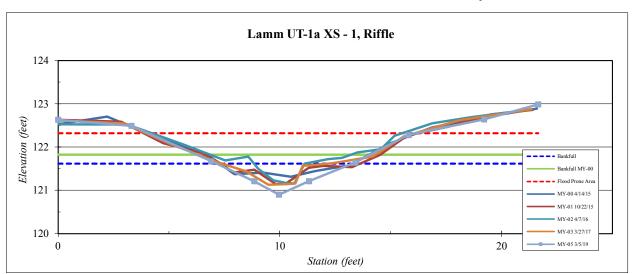

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 1 XS - 6, Riffle
Feature	Riffle
Date:	3/5/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
0.0	134.97
3.8	134.37
7.0	133.46
9.2	132.93
10.1	132.57
11.6	132.65
13.7	132.84
16.8	133.53
20.3	133.84
22.3	134.06

SUMMARY DATA	
Bankfull Elevation:	133.4
Bankfull Cross-Sectional Area:	3.9
Bankfull Width:	8.7
Flood Prone Area Elevation:	134.2
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.8
Mean Depth at Bankfull:	0.4
W / D Ratio:	19.4
Entrenchment Ratio:	5.7
Bank Height Ratio:	1.25

Stream Type C/E

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit. Overall channel area has remained constant. Sediment mobilization has resulted in minor downcutting, which has stabilized over the past 5 years. No problems are visible in this reach.

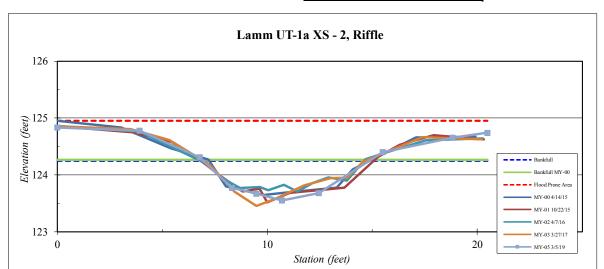

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 1a XS - 1, Riffle
Feature	Riffle
Date:	3/5/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
0.0	122.63
3.3	122.49
6.9	121.67
8.8	121.21
10.0	120.90
11.3	121.21
13.4	121.64
15.8	122.28
19.2	122.64
21.6	122.99

SUMMARY DATA	
Bankfull Elevation:	121.6
Bankfull Cross-Sectional Area:	2.1
Bankfull Width:	6.2
Flood Prone Area Elevation:	122.3
Flood Prone Width:	14.0
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.3
W / D Ratio:	18.3
Entrenchment Ratio:	2.3
Bank Height Ratio:	1.1

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.

No problems have been noted in this reach. Minor alterations in shallow channels may result in large discrepancies including elevated BHR.

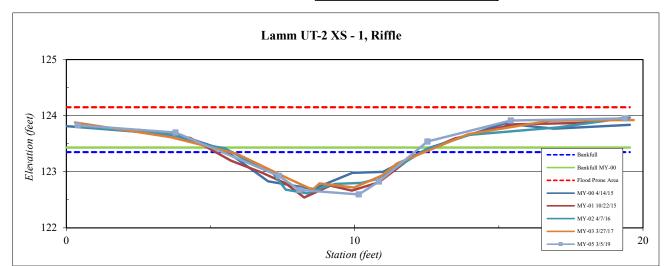

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 1a XS - 2, Riffle
Feature	Riffle
Date:	3/5/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
0.0	124.84
3.9	124.78
6.8	124.31
8.3	123.77
9.5	123.67
10.7	123.55
12.5	123.68
15.5	124.40
18.8	124.65
20.5	124.74

SUMMARY DATA	
Bankfull Elevation:	124.3
Bankfull Cross-Sectional Area:	3.5
Bankfull Width:	7.9
Flood Prone Area Elevation:	125.0
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.4
W / D Ratio:	17.8
Entrenchment Ratio:	6.3
Bank Height Ratio:	1.14

Stream Type C/E

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit. No problems have been noted in this reach. Minor alterations in shallow channels may result in large discrepancies including elevated BHR.


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 2 XS - 1, Riffle
Feature	Riffle
Date:	3/5/2019
Field Crew:	Perkinson, Radecki

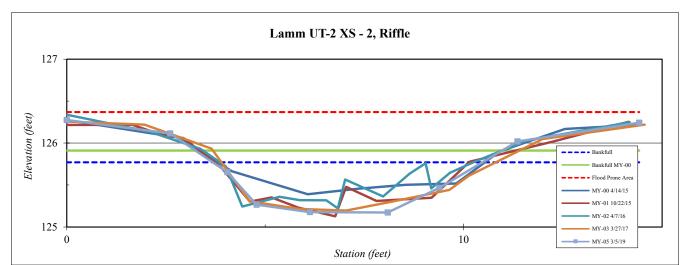
Station	Elevation
0.4	123.83
3.8	123.70
7.4	122.93
8.1	122.68
10.1	122.60
10.8	122.82
12.5	123.54
15.4	123.91
19.4	123.95

SUMMARY DATA	
Bankfull Elevation:	123.4
Bankfull Cross-Sectional Area:	3.1
Bankfull Width:	6.7
Flood Prone Area Elevation:	124.2
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.8
Mean Depth at Bankfull:	0.5
W / D Ratio:	14.5
Entrenchment Ratio:	7.5
Bank Height Ratio:	1.1

Stream Type C/E	Stream Type	C/E
-----------------	-------------	-----

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.

No problems have been noted in this reach. Minor alterations in shallow channels may result in large discrepancies including elevated BHR.

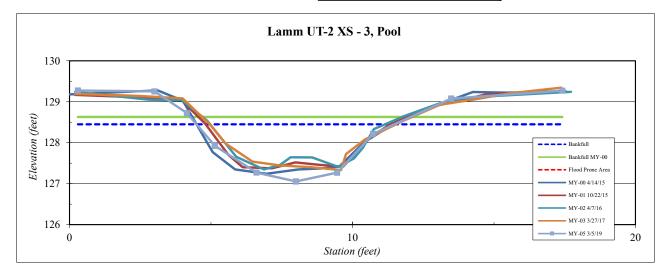

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 2 XS - 2, Riffle
Feature	Riffle
Date:	3/5/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
0.0	126.27
2.6	126.11
4.0	125.65
4.8	125.27
6.1	125.18
8.1	125.17
9.4	125.47
11.4	126.02
14.4	126.24

SUMMARY DATA	
Bankfull Elevation:	125.8
Bankfull Cross-Sectional Area:	2.9
Bankfull Width:	6.8
Flood Prone Area Elevation:	126.4
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.4
W / D Ratio:	15.9
Entrenchment Ratio:	7.4
Bank Height Ratio:	1.3

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.

No problems have been noted in this reach. Minor alterations in shallow channels may result in large discrepancies including elevated BHR.

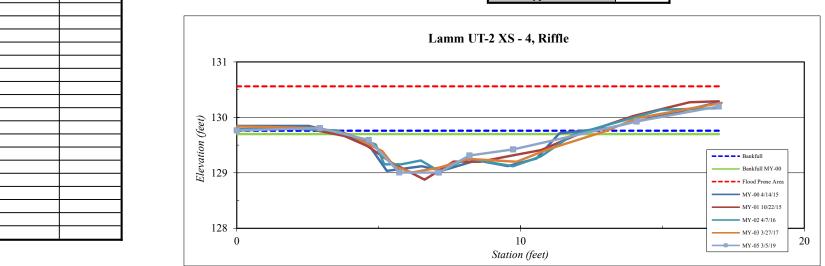

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 2 XS - 3, Pool
Feature	Pool
Date:	3/5/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
0.3	129.3
3.0	129.3
4.1	128.7
5.1	127.9
6.6	127.3
8.0	127.1
9.5	127.3
10.7	128.2
13.5	129.1
17.4	129.3

SUMMARY DATA	
Bankfull Elevation:	128.5
Bankfull Cross-Sectional Area:	6.1
Bankfull Width:	7.0
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.4
Mean Depth at Bankfull:	0.9
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	<1

Stream Type C/E

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.

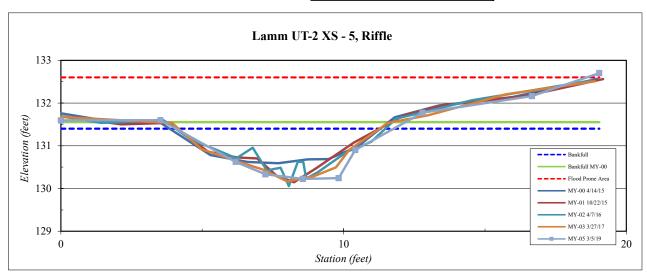

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 2 XS - 4, Riffle
Feature	Riffle
Date:	3/5/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
0.0	129.77
2.9	129.81
4.7	129.59
5.7	129.01
7.1	129.00
8.2	129.31
9.7	129.42
14.1	129.93
17.0	130.20

SUMMARY DATA	
Bankfull Elevation:	129.8
Bankfull Cross-Sectional Area:	3.4
Bankfull Width:	9.4
Flood Prone Area Elevation:	130.6
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.8
Mean Depth at Bankfull:	0.4
W / D Ratio:	26.0
Entrenchment Ratio:	5.3
Bank Height Ratio:	1.0

|--|

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 2 XS - 5, Riffle
Feature	Riffle
Date:	3/5/2019
Field Crew:	Perkinson, Radecki

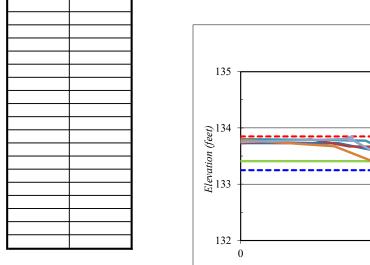
Station	Elevation
0.0	131.59
3.5	131.60
6.2	130.62
7.2	130.33
8.6	130.22
9.8	130.24
10.4	130.90
12.8	131.78
16.7	132.16
19.0	132.70

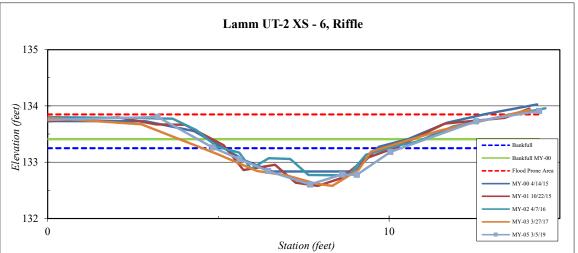
SUMMARY DATA	
Bankfull Elevation:	131.4
Bankfull Cross-Sectional Area:	5.6
Bankfull Width:	7.7
Flood Prone Area Elevation:	132.6
Flood Prone Width:	50.0
Max Depth at Bankfull:	1.2
Mean Depth at Bankfull:	0.7
W / D Ratio:	10.6
Entrenchment Ratio:	6.5
Bank Height Ratio:	1.2

|--|

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.

Overall channel area has remained constant. Sediment mobilization has resulted in minor downcutting, which has stabilized over the past 5 years. No problems are visible in this reach.

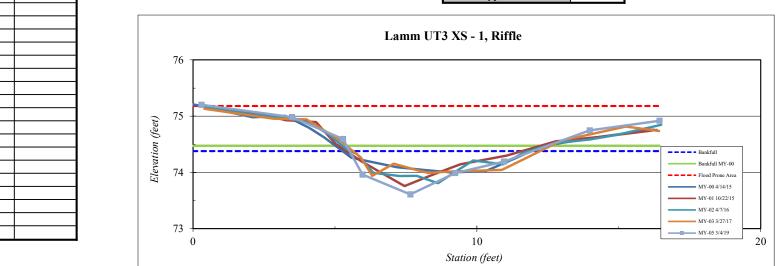

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 2 XS - 6, Riffle
Feature	Riffle
Date:	3/5/2019
Field Crew:	Perkinson, Radecki


Station	Elevation
-0.1	133.75
3.2	133.81
4.8	133.26
5.6	133.06
6.5	132.85
7.7	132.60
8.6	132.78
9.1	132.78
10.0	133.18
12.5	133.73
14.4	133.91

SUMMARY DATA	
Bankfull Elevation:	133.3
Bankfull Cross-Sectional Area:	2.0
Bankfull Width:	5.5
Flood Prone Area Elevation:	133.9
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.4
W / D Ratio:	15.1
Entrenchment Ratio:	9.1
Bank Height Ratio:	1.0

Stream Type C/E	Stream Type	C/E
-----------------	-------------	-----

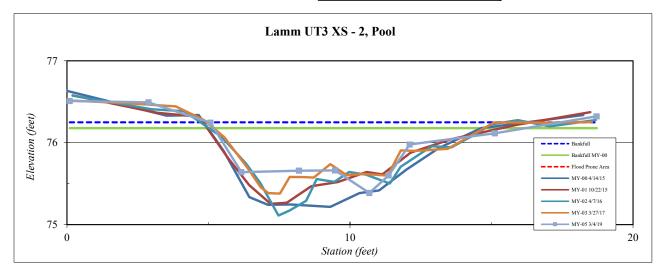
**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 3 XS - 1, Riffle
Feature	Riffle
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
0.3	75.20
3.5	74.98
5.3	74.59
6.0	73.96
7.7	73.61
9.2	73.99
11.0	74.19
14.0	74.75
16.4	74.92

SUMMARY DATA	
Bankfull Elevation:	74.4
Bankfull Cross-Sectional Area:	2.6
Bankfull Width:	6.5
Flood Prone Area Elevation:	75.2
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.8
Mean Depth at Bankfull:	0.4
W / D Ratio:	16.3
Entrenchment Ratio:	7.7
Bank Height Ratio:	1.0

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.

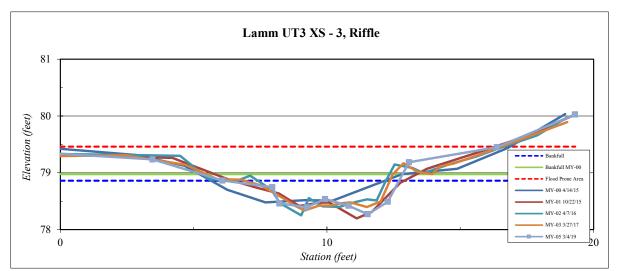

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 3 XS - 2, Pool
Feature	Pool
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
0.1	76.5
2.9	76.5
5.1	76.2
6.2	75.6
8.2	75.7
9.5	75.7
10.7	75.4
11.4	75.6
12.1	76.0
15.1	76.1
18.7	76.3

SUMMARY DATA	
Bankfull Elevation:	76.3
Bankfull Cross-Sectional Area:	4.8
Bankfull Width:	12.4
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	0.9
Mean Depth at Bankfull:	0.4
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

J 1

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 3 XS - 3, Riffle
Feature	Riffle
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

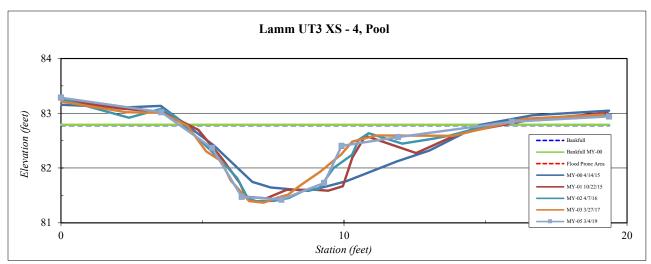
Station	Elevation
-0.3	79.34
3.5	79.24
6.1	78.86
8.0	78.74
8.2	78.46
9.2	78.39
9.9	78.54
10.8	78.42
11.5	78.27
12.3	78.49
13.1	79.19
16.4	79.45
19.3	80.03
	I

SUMMARY DATA	
Bankfull Elevation:	78.9
Bankfull Cross-Sectional Area:	2.0
Bankfull Width:	6.6
Flood Prone Area Elevation:	79.5
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.3
W / D Ratio:	21.8
Entrenchment Ratio:	7.6
Bank Height Ratio:	<1

Stream Type	С

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.

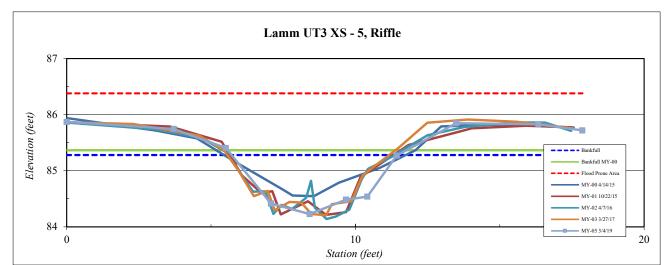
UT 3 has slight resorting of fill material in the channel; however, area has primarily remained constant and no significant erosion is apparent.


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 3 XS - 4, Pool
Feature	Pool
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
0.0	83.3
3.5	83.0
5.3	82.4
6.4	81.5
7.8	81.4
9.3	81.7
9.9	82.4
11.9	82.6
15.9	82.8
19.4	82.9

SUMMARY DATA	
Bankfull Elevation:	82.8
Bankfull Cross-Sectional Area:	6.2
Bankfull Width:	10.8
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.4
Mean Depth at Bankfull:	0.6
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.

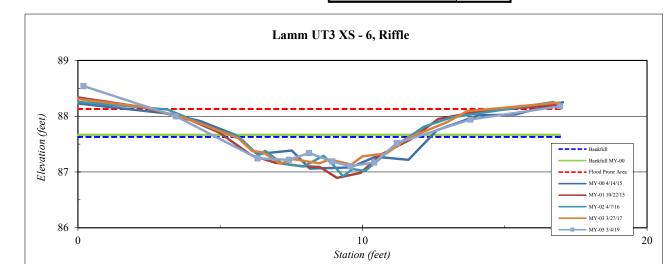

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 3 XS - 5, Riffle
Feature	Riffle
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
0.0	85.87
3.7	85.74
5.5	85.41
7.1	84.42
8.4	84.23
9.7	84.48
10.4	84.54
11.4	85.27
13.5	85.85
16.3	85.83
17.9	85.72

SUMMARY DATA	
Bankfull Elevation:	85.3
Bankfull Cross-Sectional Area:	4.0
Bankfull Width:	5.8
Flood Prone Area Elevation:	86.4
Flood Prone Width:	50.0
Max Depth at Bankfull:	1.1
Mean Depth at Bankfull:	0.7
W / D Ratio:	8.4
Entrenchment Ratio:	8.6
Bank Height Ratio:	<1

Stream	Type	C/E

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit. Sediment mobilization has resulted in minor downcutting, which has stabilized over the past 5 years. No problems are visible in this reach.

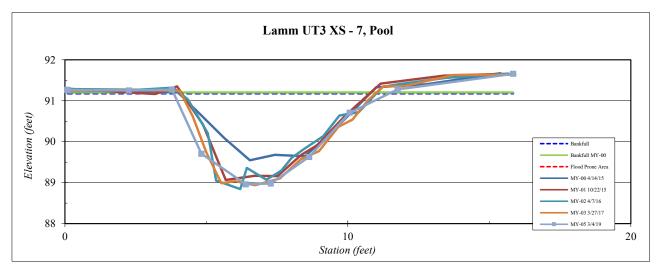

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 3 XS - 6, Riffle
Feature	Riffle
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
0.2	88.54
3.4	88.00
6.3	87.25
7.4	87.22
8.1	87.34
8.9	87.19
9.6	87.10
10.4	87.17
11.2	87.52
13.8	87.94
16.9	88.18

SUMMARY DATA	
Bankfull Elevation:	87.6
Bankfull Cross-Sectional Area:	2.3
Bankfull Width:	7.0
Flood Prone Area Elevation:	88.1
Flood Prone Width:	14.0
Max Depth at Bankfull:	0.5
Mean Depth at Bankfull:	0.3
W / D Ratio:	21.3
Entrenchment Ratio:	2.0
Bank Height Ratio:	<1

Stream Type C/E	Stream Type	C/E
-----------------	-------------	-----

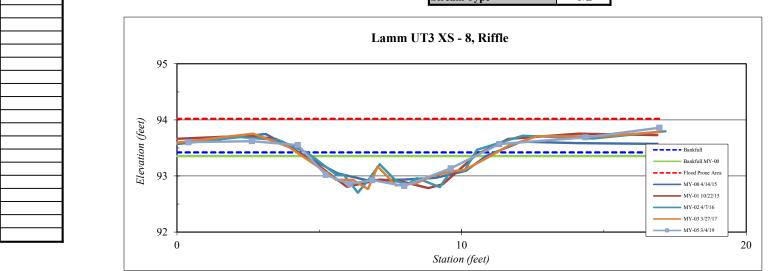
**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 3 XS - 7, Pool
Feature	Pool
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
0.1	91.3
2.3	91.2
3.8	91.3
4.8	89.7
6.4	89.0
7.3	89.0
8.6	89.6
10.1	90.7
11.8	91.3
15.8	91.7

SUMMARY DATA	
Bankfull Elevation:	91.2
Bankfull Cross-Sectional Area:	9.9
Bankfull Width:	7.6
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	2.2
Mean Depth at Bankfull:	1.3
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 3 XS - 8, Riffle
Feature	Riffle
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

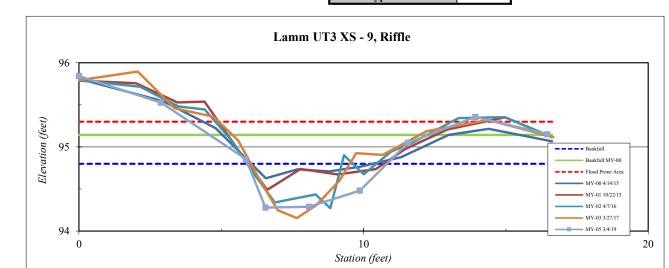
Station	Elevation
0.4	93.60
2.6	93.62
4.2	93.55
5.2	93.02
6.1	92.86
6.9	92.93
8.0	92.82
9.6	93.13
11.3	93.57
14.4	93.69
17.0	93.86

SUMMARY DATA	
Bankfull Elevation:	93.4
Bankfull Cross-Sectional Area:	2.5
Bankfull Width:	6.3
Flood Prone Area Elevation:	94.0
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.4
W / D Ratio:	15.9
Entrenchment Ratio:	7.9
Bank Height Ratio:	1.2

Stream Type C/E

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.

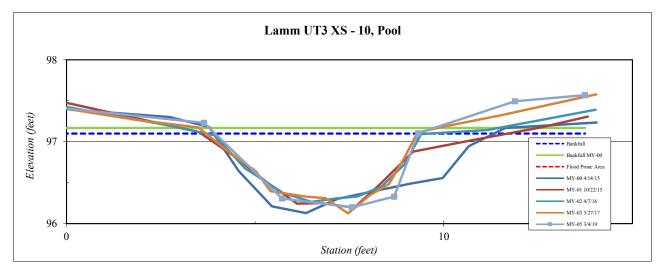
No problems have been noted in this reach. Minor alterations in shallow channels may result in large discrepancies including elevated BHR.


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 3 XS - 9, Riffle
Feature	Riffle
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
0.0	95.84
2.9	95.53
5.9	94.86
6.6	94.28
8.1	94.29
9.9	94.48
11.6	95.05
13.9	95.36
16.5	95.15

SUMMARY DATA	
Bankfull Elevation:	94.8
Bankfull Cross-Sectional Area:	1.8
Bankfull Width:	4.9
Flood Prone Area Elevation:	95.3
Flood Prone Width:	10.0
Max Depth at Bankfull:	0.5
Mean Depth at Bankfull:	0.4
W / D Ratio:	13.3
Entrenchment Ratio:	2.0
Bank Height Ratio:	1.2

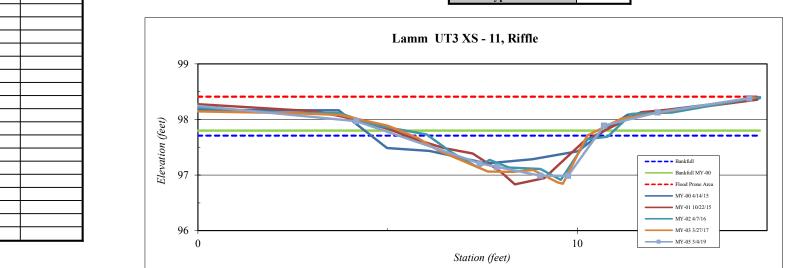
**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit. Sediment mobilization has resulted in minor downcutting, which has stabilized over the past 4 years. No problems are visible in this reach.


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 3 XS - 10, Pool
Feature	Pool
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
-0.3	97.4
3.6	97.2
5.7	96.3
7.6	96.2
8.7	96.3
9.3	97.1
11.9	97.5
13.7	97.6

SUMMARY DATA	
Bankfull Elevation:	97.1
Bankfull Cross-Sectional Area:	3.4
Bankfull Width:	5.4
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	0.9
Mean Depth at Bankfull:	0.6
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 3 XS - 11, Riffle
Feature	Riffle
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

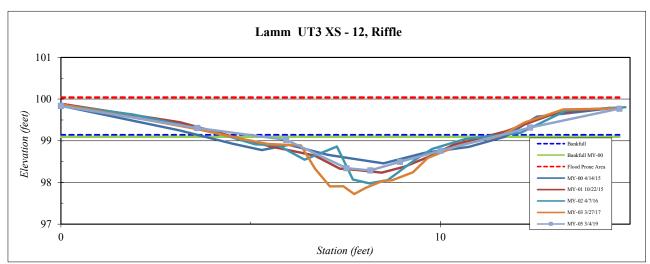
Ct. 1*	T31 4*
Station	Elevation
-0.2	98.26
4.2	97.97
7.4	97.21
7.9	97.15
9.0	96.99
9.8	96.99
10.7	97.89
12.1	98.13
14.5	98.38
	1

SUMMARY DATA	
Bankfull Elevation:	97.7
Bankfull Cross-Sectional Area:	2.3
Bankfull Width:	5.2
Flood Prone Area Elevation:	98.4
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.4
W / D Ratio:	11.8
Entrenchment Ratio:	9.6
Bank Height Ratio:	1.3

Stream Type C/E	Stream Type	C/E
-----------------	-------------	-----

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.

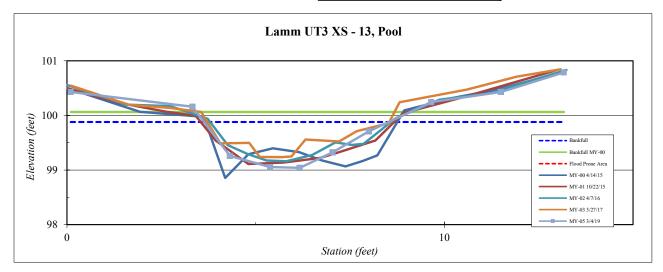
No problems have been noted in this reach. Minor alterations in shallow channels may result in large discrepancies including elevated BHR.


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 3 XS - 12, Riffle
Feature	Riffle
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
0.0	99.84
3.6	99.31
5.9	99.02
7.5	98.34
8.2	98.29
8.9	98.49
10.0	98.76
12.4	99.32
14.7	99.77
	1

SUMMARY DATA	
Bankfull Elevation:	99.1
Bankfull Cross-Sectional Area:	2.7
Bankfull Width:	6.6
Flood Prone Area Elevation:	100.0
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.9
Mean Depth at Bankfull:	0.4
W / D Ratio:	16.1
Entrenchment Ratio:	7.6
Bank Height Ratio:	<1

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.

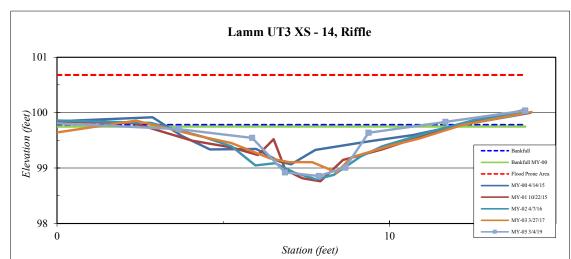

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 3 XS - 13, Pool
Feature	Pool
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
0.1	100.4
3.3	100.2
4.3	99.3
5.4	99.1
6.2	99.0
7.0	99.3
8.0	99.7
9.7	100.2
11.5	100.4
13.2	100.8

SUMMARY DATA	
Bankfull Elevation:	99.9
Bankfull Cross-Sectional Area:	2.6
Bankfull Width:	4.9
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	0.8
Mean Depth at Bankfull:	0.5
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.4

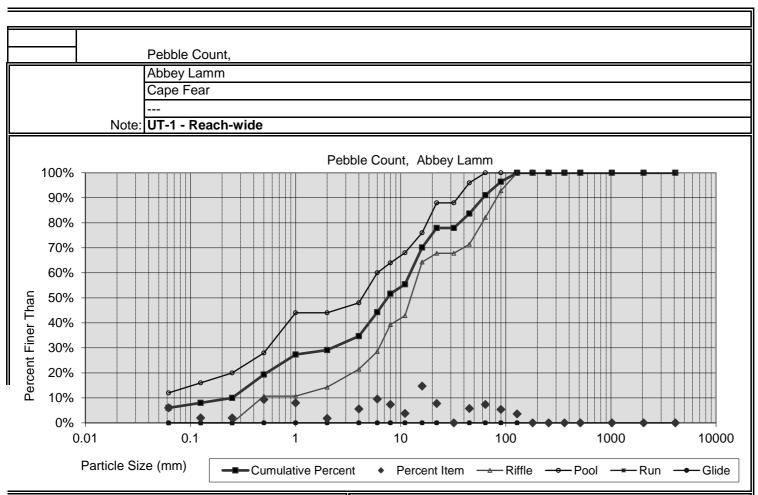
J 1

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.

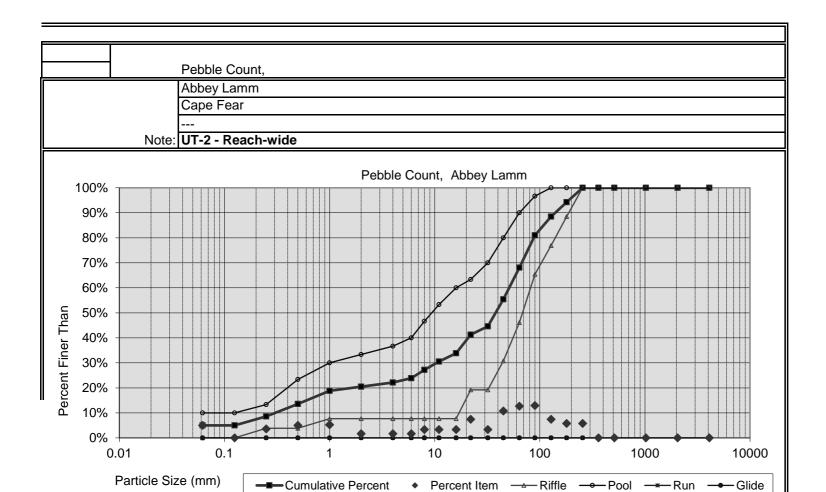

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 3 XS - 14, Riffle
Feature	Riffle
Date:	3/4/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
-0.1	99.81
3.7	99.70
5.9	99.55
6.9	98.92
7.9	98.86
8.7	99.01
9.4	99.64
11.7	99.83
14.1	100.04
	1

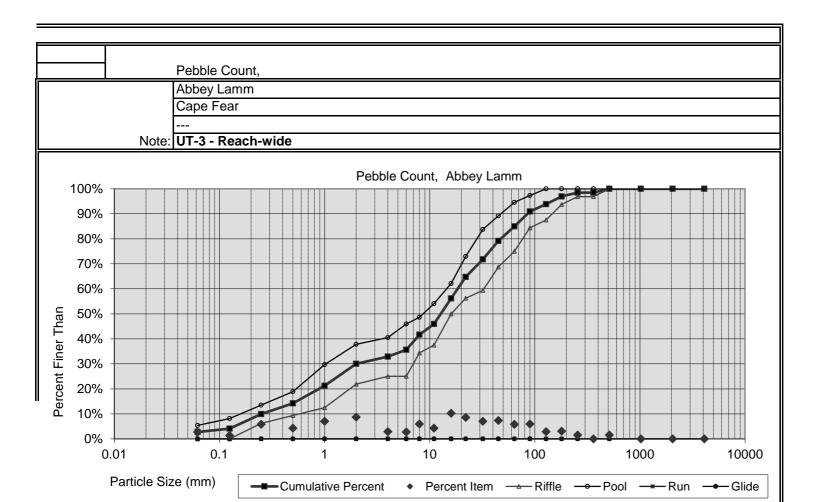
SUMMARY DATA	
Bankfull Elevation:	99.8
Bankfull Cross-Sectional Area:	3.0
Bankfull Width:	10.1
Flood Prone Area Elevation:	100.7
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.9
Mean Depth at Bankfull:	0.3
W / D Ratio:	34.0
Entrenchment Ratio:	5.0
Bank Height Ratio:	<1



**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit.


No problems have been noted in this reach. Minor alterations in shallow channels may result in large discrepancies including elevated BHR.

	Dobble Count					
	Pebble Count, Abbey Lamm					
	Cape Fear					
	Note: Mainstem - Ro	each-wide				
100% —		P(ebble Count, Abbey	Lamm		
90%						
80% —						
70%			98	 / / 		
60%						
				<i>[</i>		
ا ج				<i> </i>		
E 40% 						
道 30% —	0			/		
9 20% 			 	(
"				•		
0%						
0.01	0.1	1	10	100	1000	10000
Partio	cle Size (mm)	Cumulative Perc	ent Percent Iter	m —— Riffle -	→ Pool → Rui	n — Glide


Size percent less than (mm)						Percer	t by substra	ite type		
D16	D35	D50	D84	D95	silt/clay	sand	gravel	cobble	boulder	bedrock
0.125	13.42	30.6	98	133	14%	12%	47%	27%	0%	0%

Size percent less than (mm)					Percent by substrate type					
D16	D35	D50	D84	D95	silt/clay	sand	gravel	cobble	boulder	bedrock
0.390	4.05	7.5	46	82	6%	23%	62%	9%	0%	0%

Size percent less than (mm)					Percent by substrate type					
D16	D35	D50	D84	D95	silt/clay	sand	gravel	cobble	boulder	bedrock
0.687	16.81	37.9	104	189	5%	16%	48%	32%	0%	0%

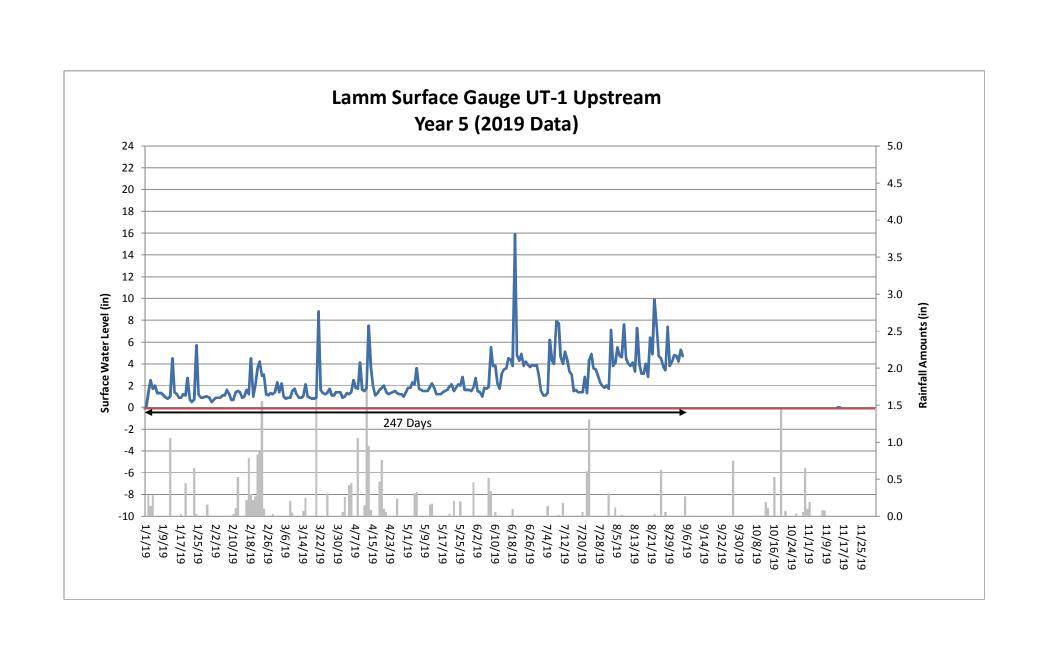
Size percent less than (mm)						Percer	it by substra	ate type		
D16	D35	D50	D84	D95	silt/clay	sand	gravel	cobble	boulder	bedrock
0.595	5.45	12.8	60	145	3%	26%	53%	13%	1%	4%

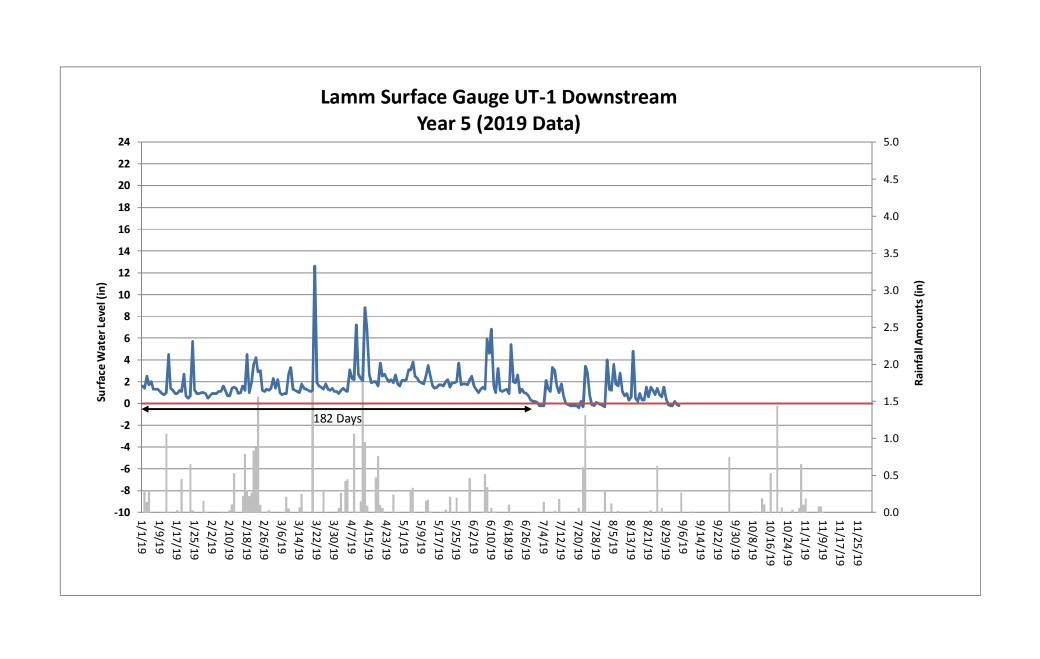
APPENDIX E

HYDROLOGY DATA

Tables 12A-B. UT1 and UT3 Channel Evidence

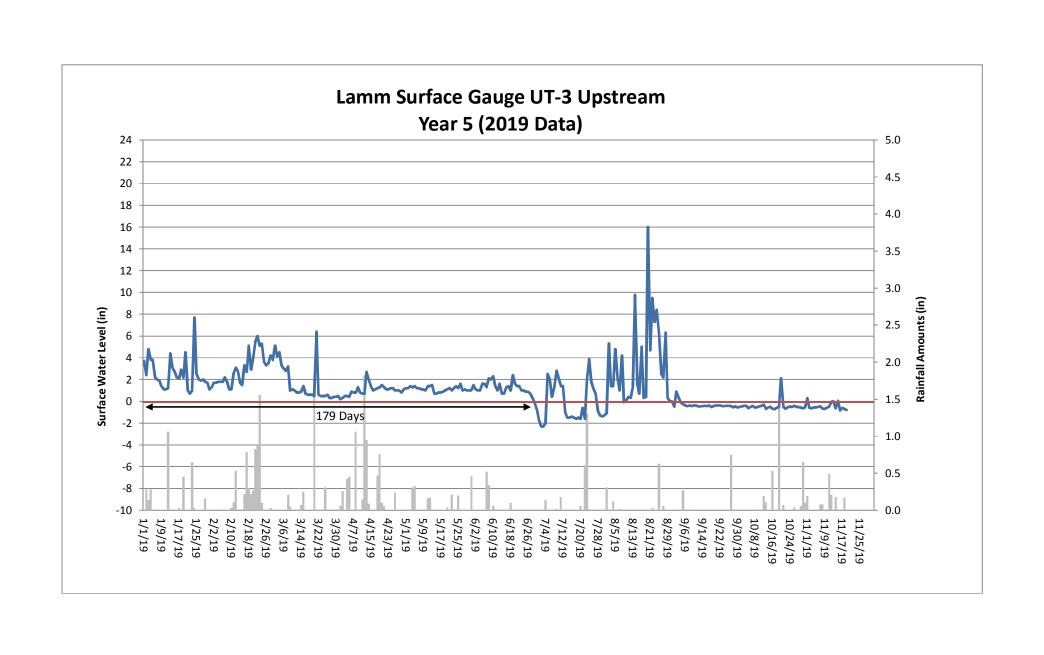
Stream Gauge Graphs


Table 13. Verification of Bankfull Events


Table 14. Groundwater Hydrology Data

Groundwater Gauge Graphs

Table 12A. UT1 Channel Evidence


-			abic 12A.	O I I Chan		
UT3 Channel Evidence	Year 1 (2015)	Year 2 (2016)	Year 3 (2017)	Year 4 (2018)	Year 5 (2019)	Reference Photo
Max consecutive days channel flow	64	101	118	119	247	NAS CRAF LONGO NATIONAL PROGRAMMA A PRIL CARGO DE LA VINCIONAL PROGRAMMA DE LA VINCIONAL PROGRAM
Presence of litter and debris (wracking)	Yes	Yes	Yes	Yes	Yes	
Leaf litter disturbed or washed away	Yes	Yes	Yes	Yes	Yes	
Matted, bent, or absence of vegetation (herbaceous or otherwise)	Yes	Yes	Yes	Yes	Yes	
Sediment deposition and/or scour indicating sediment transport	Yes	Yes	Yes	Yes	Yes	
Water staining due to continual presence of water	Yes	Yes	Yes	Yes	Yes	
Formation of channel bed and banks	Yes	Yes	Yes	Yes	Yes	
Sediment sorting within the primary path of flow	Yes	Yes	Yes	Yes	Yes	
Sediment shelving or a natural line impressed on the banks	Yes	Yes	Yes	Yes	Yes	
Change in plant community (absence or destruction of terrestrial vegetation and/or transition to species adapted for flow or inundation for a long duration, including hydrophytes)	Yes	Yes	Yes	Yes	Yes	
Development of channel pattern (meander bends and/or channel braiding) at natural topographic breaks, woody debris piles, or plant root systems	Yes	Yes	Yes	Yes	Yes	
Exposure of woody plant roots within the primary path of flow	No	No	No	No	No	UT-1 channel formation at the stream gat
Other:	_					

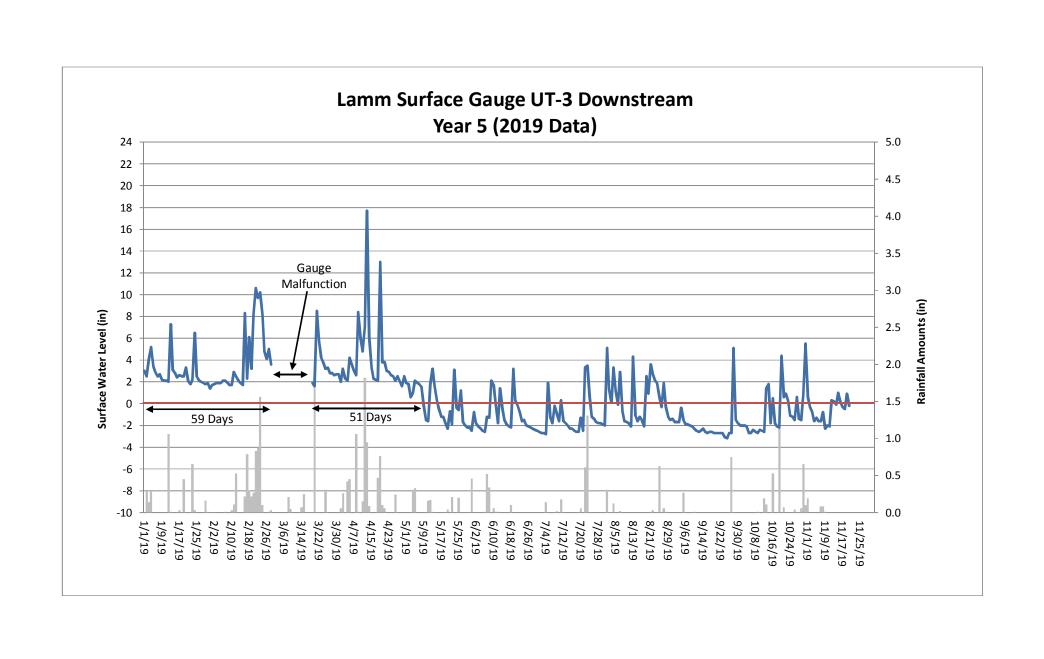


Table 12B. UT3 Channel Evidence

UT3 Channel Evidence	Year 1 (2015)	Year 2 (2016)	Year 3 (2017)	Year 4 (2018)	Year 5 (2019)
Max consecutive days channel flow	51	100	160	104	90
Presence of litter and debris (wracking)	Yes	Yes	Yes	Yes	Yes
Leaf litter disturbed or washed away	Yes	Yes	Yes	Yes	Yes
Matted, bent, or absence of vegetation (herbaceous or otherwise)	Yes	Yes	Yes	Yes	Yes
Sediment deposition and/or scour indicating sediment transport	Yes	Yes	Yes	Yes	Yes
Water staining due to continual presence of water	Yes	Yes	Yes	Yes	Yes
Formation of channel bed and banks	Yes	Yes	Yes	Yes	Yes
Sediment sorting within the primary path of flow	Yes	Yes	Yes	Yes	Yes
Sediment shelving or a natural line impressed on the banks	Yes	Yes	Yes	Yes	Yes
Change in plant community (absence or destruction of terrestrial vegetation and/or transition to species adapted for flow or inundation for a long duration, including hydrophytes)	Yes	Yes	Yes	Yes	Yes
Development of channel pattern (meander bends and/or channel braiding) at natural topographic breaks, woody debris piles, or plant root systems	Yes	Yes	Yes	Yes	Yes
Exposure of woody plant roots within the primary path of flow	No	No	No	No	No
Other:					

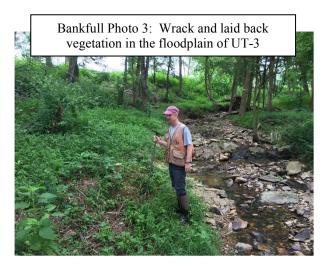


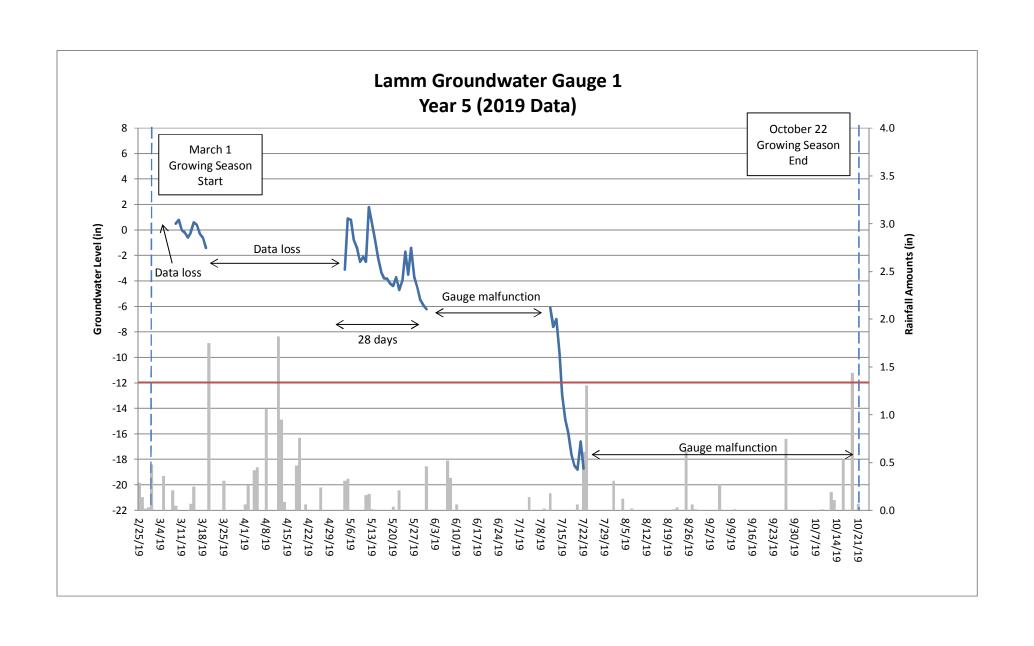
Table 13. Verification of Bankfull Events

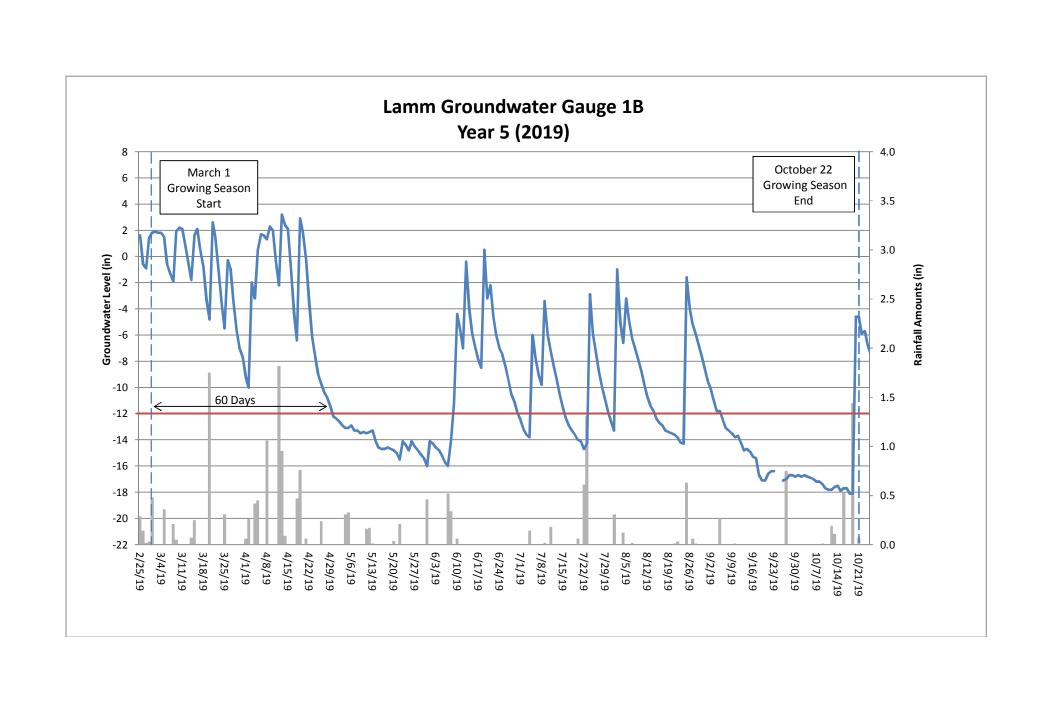

Date of Data Collection	Date of Occurrence	Method	Photo (if available)
May 27, 2015	April 30, 2015	1.66 inches of rain documented in one day at an onsite rain gauge.	1
June 28, 2015	June 19, 2015	Wrack, sediment, and laid-back vegetation observed in the floodplain after 2.28 inches of rain was recorded in one day at an onsite rain gauge.	1-3
October 10, 2016	October 8, 2016	A trail camera installed on the right bank of UT3 documented a bankfull flow after 3.41 inches of rain was recorded in one day at an onsite rain gauge.	4
April 28, 2017	April 24, 2017	Wrack and laid-back vegetation observed in the floodplain after 3.41 inches of rain was recorded over two days at an onsite rain gauge.	5
July 19, 2017	June 19, 2017	2.24 inches of rain documented in one day at an onsite rain gauge.	
June 11, 2018	April 24, 2018	Wrack observed in the floodplain after 2.66 inches of rain documented* between April 23-24, 2018 at an onsite rain gauge.	6
October 23, 2018	August 21, 2018	Stream gauge data indicates a bankfull event occurred after 2.60 inches of rain documented* between August 20-21, 2018 at an onsite rain gauge.	
October 23, 2018	September 17, 2018	Stream gauge data indicates a bankfull event occurred after 5.33 inches of rain was recorded between September 15 and 17, 2018 at an onsite rain gauge.	1
October 23, 2018	October 11, 2018	Wrack and laid-back vegetation observed in the floodplain after 2.47 inches of rain was recorded on October 11, 2018 at an onsite rain gauge.	7-8
March 8, 2019	February 23, 2019	Stream gauge data indicates a bankfull event occurred after 3.27 inches of rain was recorded between February 22 and 23, 2019 at an onsite rain gauge.	
May 4, 2019	March 20, 2019	Stream gauge data indicates a bankfull event occurred after 1.75 inches of rain was recorded on March 20, 2019 at an onsite rain gauge.	
May 4, 2019	April 13, 2019	Stream gauge data indicates a bankfull event occurred after 2.77 inches of rain was recorded between April 12 and 13, 2019 at an onsite rain gauge.	
September 4, 2019	July 23, 2019	Stream gauge data indicates a bankfull event occurred after 1.92 inches of rain was recorded between July 22 and 23, 2019 at an onsite rain gauge.	

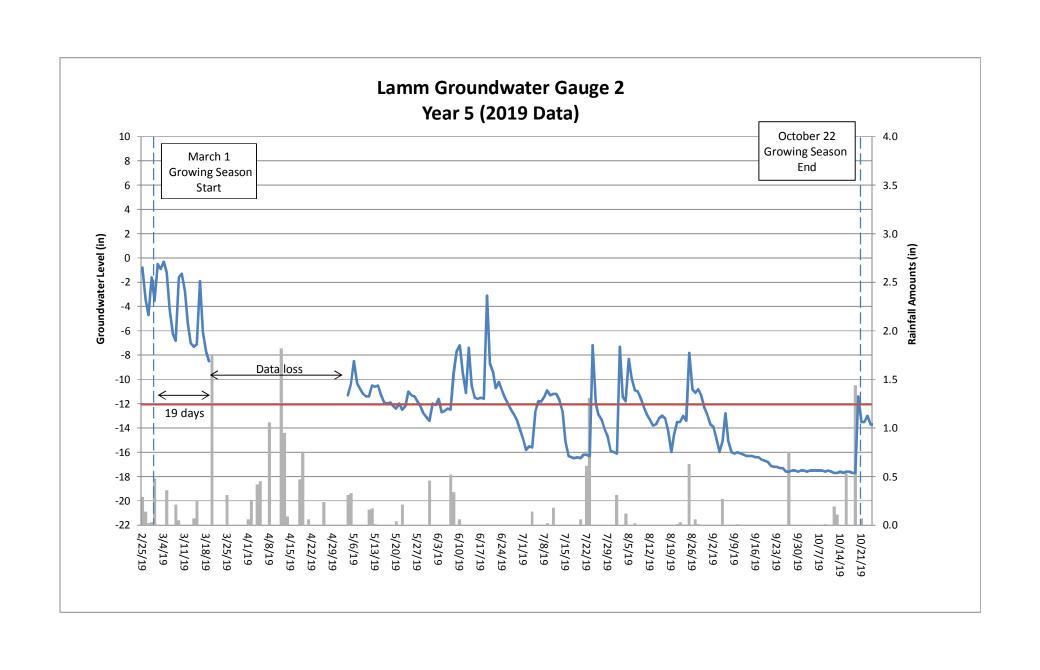
Bankfull Photo 7: Large wrack and laid back vegetation in the floodplain just upstream of a piped crossing on the mainstem

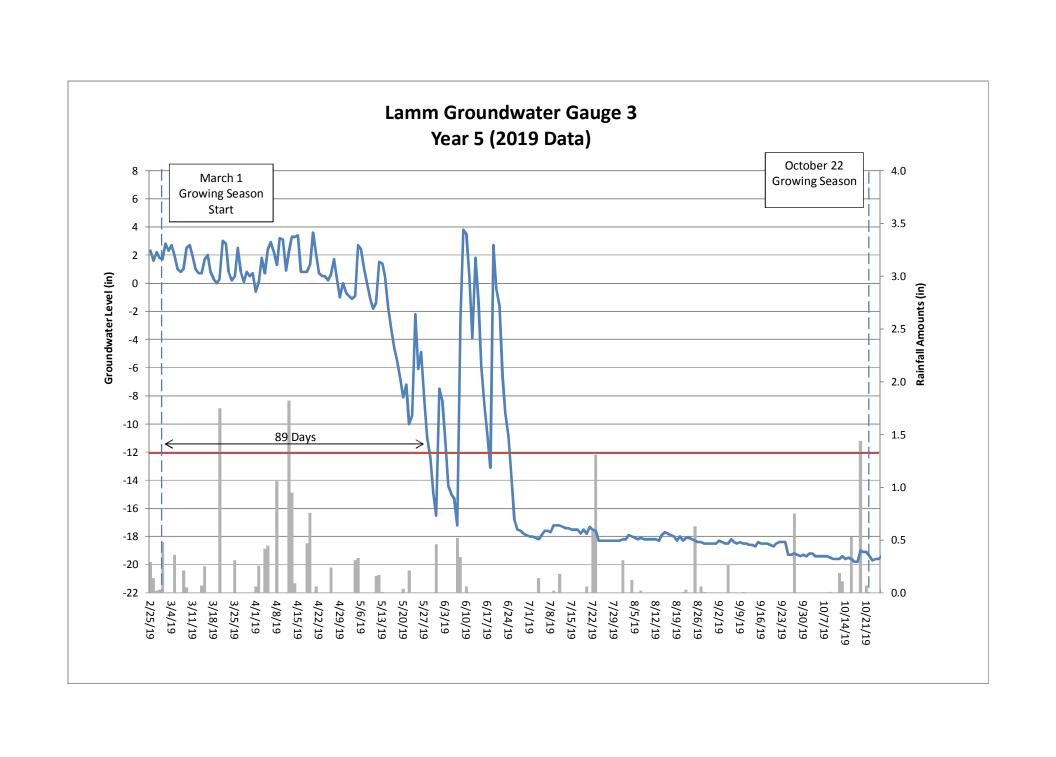
Table 14. Groundwater Hydrology Data

		Success C	riteria Achieved/Ma	x Consecutive Days I	During Growing Seaso	on (Percentage)	
Gauge	Year 1 (2015) February 1 Growing Season Start	Year 2 (2016) March 30 Growing Season Start	Year 3 (2017) February 28 Growing Season Start	Year 4 (2018) March 6 Growing Season Start	Year 5 (2019) March 1 Growing Season Start	Year 6 (2020)	Year 7 (2021)
1	No*/10 days (3.8 percent)	Yes/75 days (36 percent)	No/12 days (5.1 percent)	Yes/68 days (29 percent)	Yes/28 days (11.9 percent)		
1B ⁺				Yes/60 days (26 percent)	Yes/60 days (26 percent)		
2	Yes/35 days (13.3 percent)	Yes/122 days (59 percent)	Yes/82 days (35 percent)	Yes/30 days (13 percent)	No/19 days# (8.1 percent)		
3	No*/14 days (5.3 percent)	Yes/48 days (23 percent)	Yes/135 days (57 percent)	Yes/66 days (29 percent)	Yes/89 days (38 percent)		
4	No*/14 days (5.3 percent)	Yes/100 days (48 percent)	Yes/78 days (33 percent)	Yes/28 days (12 percent)	No/18 days# (7.7 percent)		
5	Yes/32 days (12.1 percent)	Yes/75 days (36 percent)	Yes/48 days (20 percent)	Yes/60 days (26 percent)	No/19 days [#] (8.1 percent)		
6	No*/9 days (3.4 percent)	No/7 days (3.4 percent)	No/5 days (2.1 percent)	Yes/25 days (11 percent)	No/19 days (8.1 percent)		
6B ⁺				Yes/28 days (12 percent)	No/17 days# (7.2 percent)		
7**		Yes/116 days (56 percent)	Yes/153 days (65 percent)	Yes/103 days (45 percent)	Yes/103 days (44 percent)		
8**		Yes/206 days (100 percent)	Yes/211 days (89 percent)	Yes/231 days (100 percent)	Yes/124 days (53 percent)		
9**		Yes/54 days (26 percent)	No^/12 days (5.1 percent)	Yes/132 days (57 percent)	Yes/122 days (52 percent)		

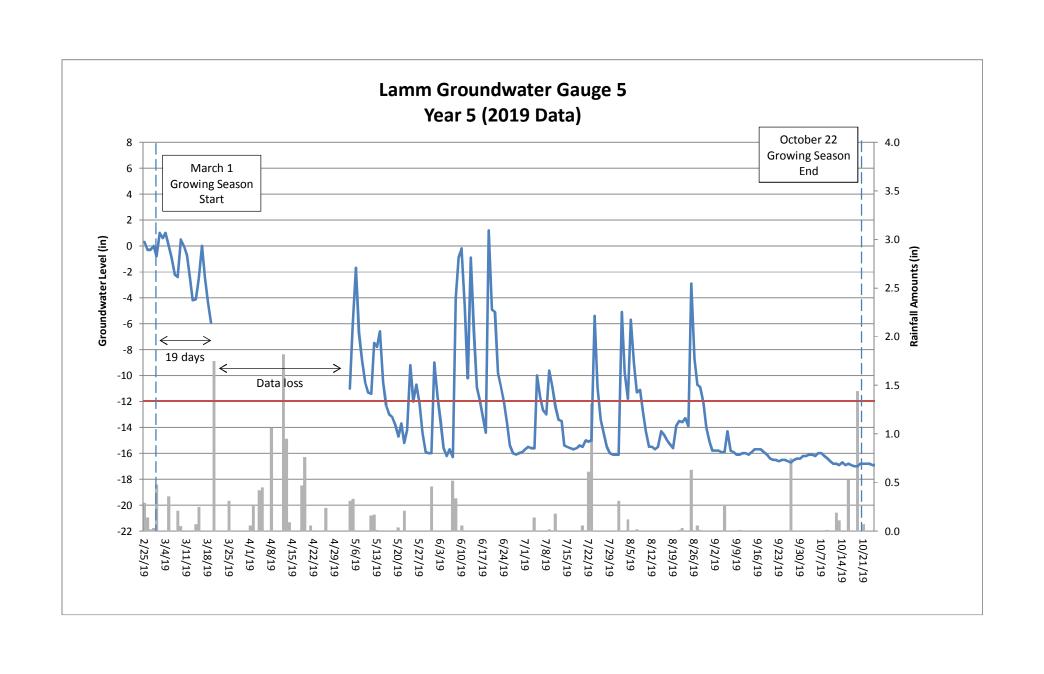

^{*} Due to Site construction activities, groundwater gauges were not installed until April 8, 2015. It is expected that all gauges would meet success criteria at the beginning of the growing season.

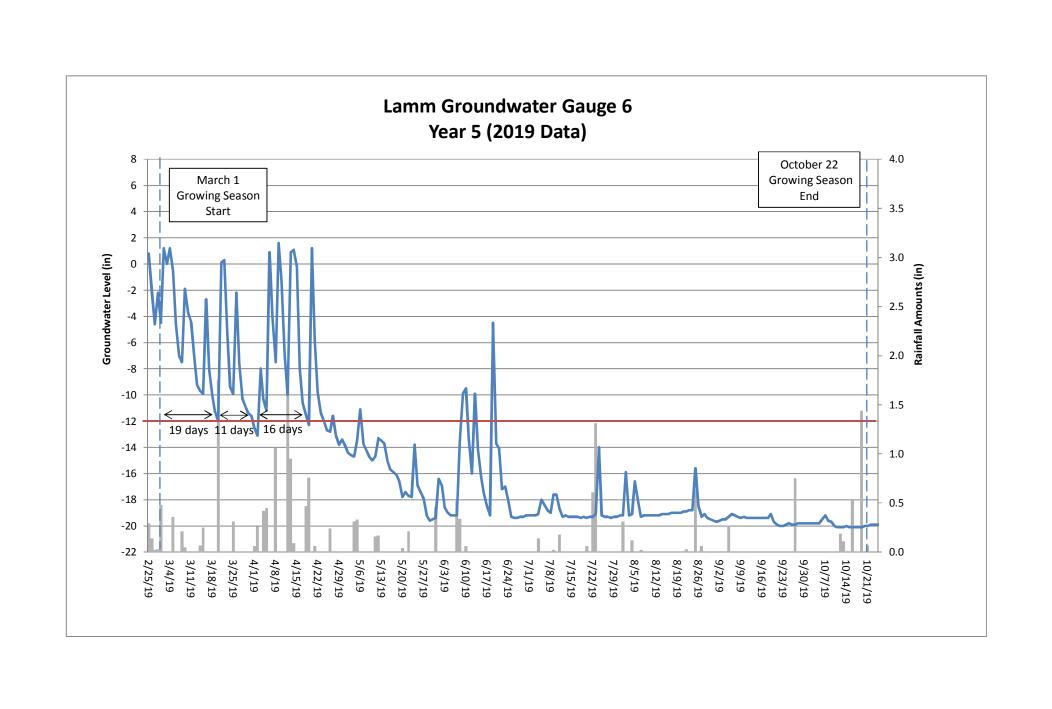

^{**} These gauges were installed on March 8, 2016 to show wetland establishment within the old pond bed.

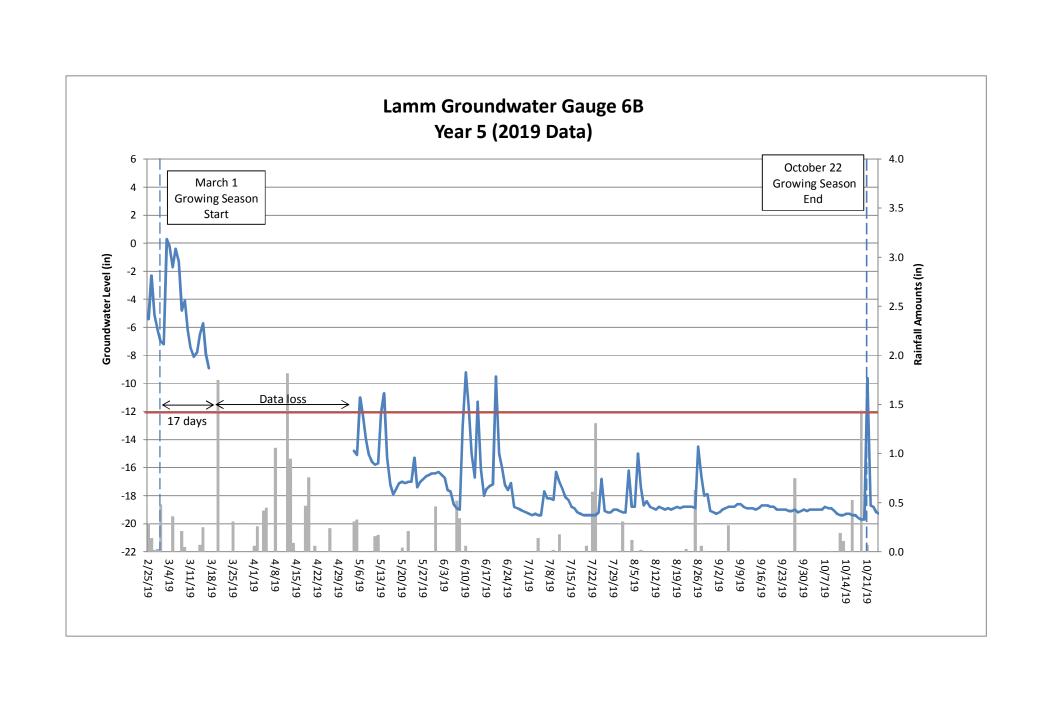

[^] This gauge malfunctioned through the majority of the growing season due to continuous inundation. It is expected that this gauge would have met success criteria had it functioned properly.

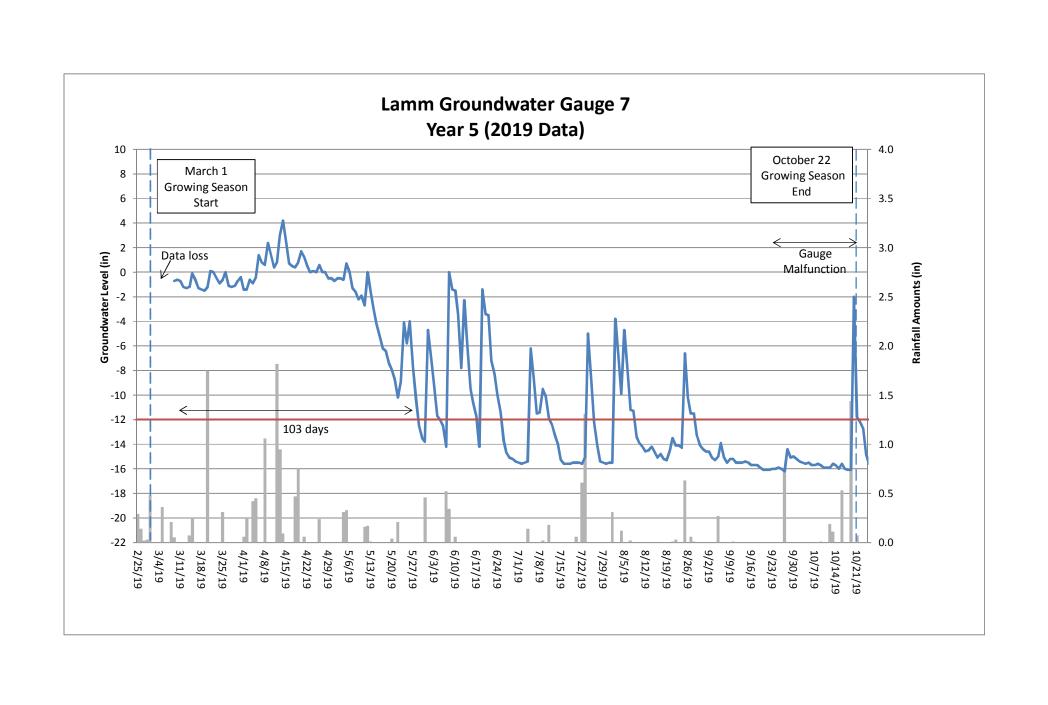

⁺These gauges were installed during Year 4 (2018) in close proximity with two gauges that had not met success criteria in previous monitoring years in order to verify the groundwater data at these locations.

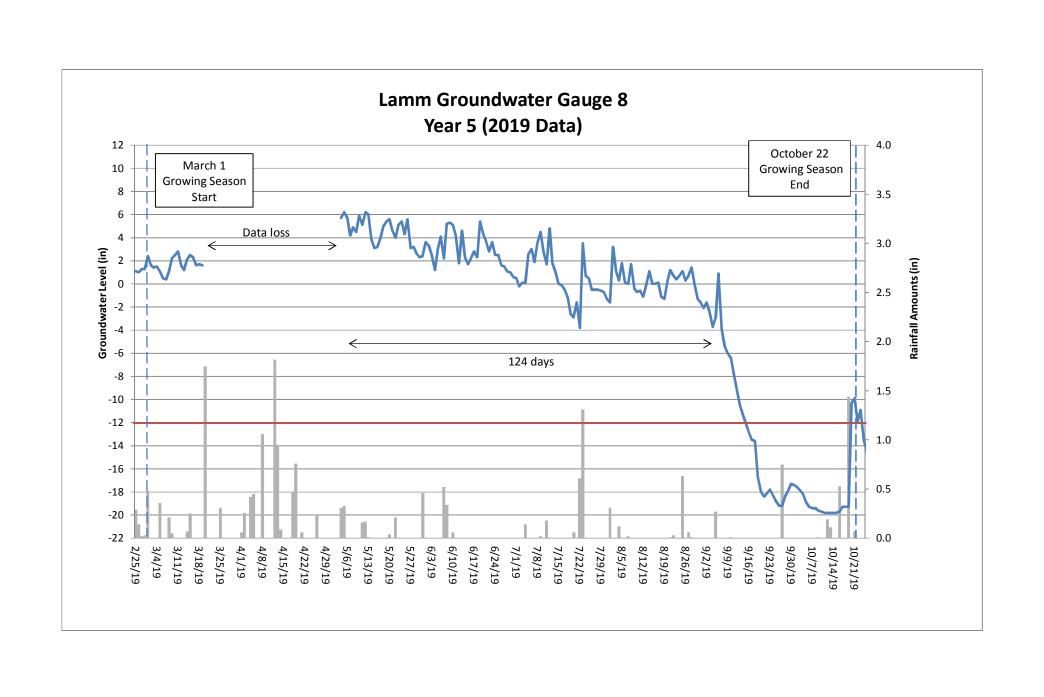
[#]These gauges did not meet success criteria due to a data shuttle failure that resulted in the loss of data from March 20 to May 3. Based on rainfall and hydrology data that was not lost, these gauges would have likely met success criteria had the loss of data not occurred.

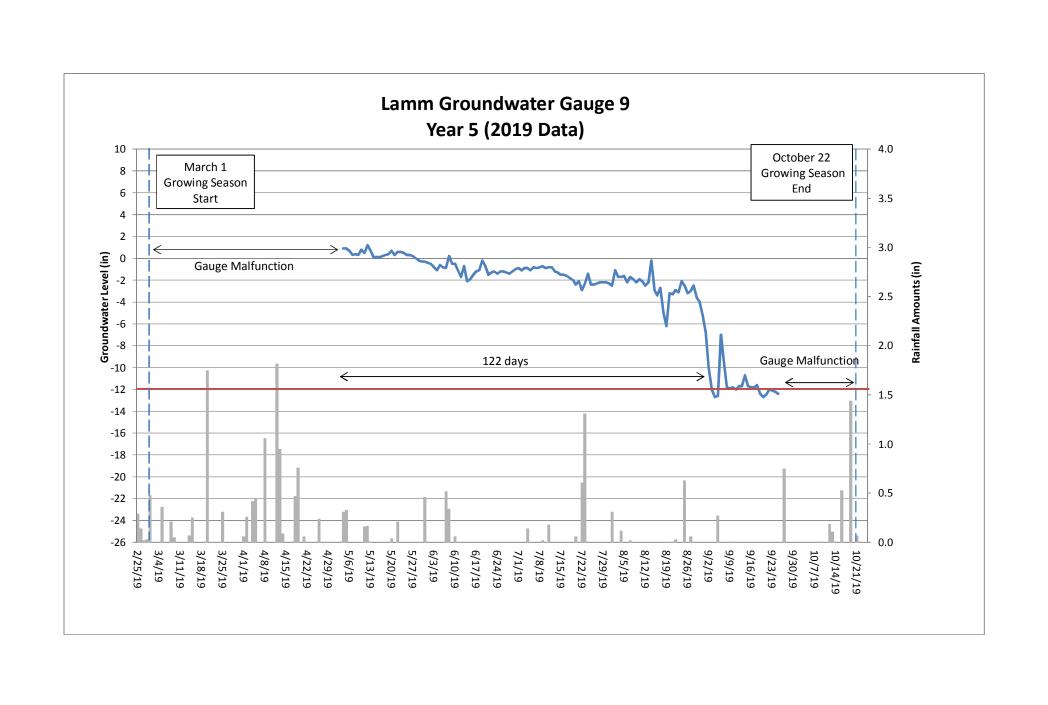












APPENDIX F BENTHIC DATA

Results

Habitat Assessment Data Sheets

PAI ID NO			52711	52712	52713
STATION			UT-1	UT-2	MAIN
DATE			6/13/2019	6/13/2019	6/13/2019
SPECIES	T.V.	F.F.G.			
PLATYHELMINTHES					
Turbellaria		Р			
Planariidae		0			
Girardia (Dugesia) tigrina	7.1	Р		7	3
MOLLUSCA					
Bivalvia					
Veneroida					
Sphaeriidae		FC			
Pisidium sp.	6.6	FC	3		
Gastropoda					
Basommatophora					
Physidae					
Physella sp.	8.7	CG		3	
ANNELIDA					
Clitellata					
Oligochaeta		CG			
Tubificida					
Lumbriculida					
Lumbriculidae		CG			
Lumbriculus sp.		CG		1	
ARTHROPODA					
Crustacea					
Isopoda					
Asellidae		SH			
Caecidotea sp.	8.4	CG	2	1	
Amphipoda		CG			
Crangonyctidae					
Crangonyx sp.	7.2	CG		7	1
Decapoda					
Cambaridae			1	1	
Insecta					
Ephemeroptera					
Caenidae		CG			
Caenis sp.	6.8	CG			2
, Heptageniidae		SC			
Stenonema femoratum	6.9	SC			4
Leptophlebiidae		CG			
Habrophlebiodes sp.				4	
SPECIES	T.V.	F.F.G.			

PAI ID NO			52711	52712	52713
STATION			UT-1	UT-2	MAIN
DATE			6/13/2019	6/13/2019	6/13/2019
SPECIES	T.V.	F.F.G.			
Odonata					
Aeshnidae		Р			
Aeshna sp.		Р	1		1
Coenagrionidae		Р		1	
Corduliidae				2	
Somatochlora sp.	8.9	Р	2		
Hemiptera					
Gerridae		Р		1	
Megaloptera					
Corydalidae		Р			
Chauliodes sp.		Р	1		
Sialidae		Р			
Sialis sp.	7	Р	2	1	
Trichoptera					
Hydropsychidae		FC			
Cheumatopsyche sp.	6.6	FC			20
Diplectrona modesta	2.3	FC	4		
Hydropsyche depravata gp.	7.9	FC		2	1
Leptoceridae		CG			
Nectopsyche sp.		SH		1	
Philopotamidae		FC			
Chimarra aterrima	3.3	FC			1
Coleoptera					
Hydrophilidae		Р			
Tropisternus sp.	9.3	Р			1
Diptera	1				_
Chironomidae					
Ablabesmyia mallochi	7.4	Р		1	1
Conchapelopia sp.	8.4	P		_	1
Parametriocnemus sp.	3.9	CG			1
Paratendipes albimanus/duplicatus	5.6		2	1	
Polypedilum aviceps	3.6	SH		3	4
Procladius sp.	8.8	P	1		•
Rheotanytarsus exiguus gp.	6.5	FC	1		1
Tanytarsus sp.	6.6	FC	=	1	_
Xylotopus par	6.1	SH	1		
Zavrelimyia sp.	8.6	P	1		
	3.3				
TOTAL NO. OF ORGANISMS			22	38	42
TOTAL NO. OF TAXA			13	17	14
EPT TAXA			1	3	5
BIOTIC INDEX ASSIGNED VALUES			6.19	6.82	6.41

Lama Mala

Habitat Assessment Field Data Sheet Mountain/ Piedmont Streams

TOTAL SCORE

Biological Assessment Unit, DWQ Directions for use: The observer is to survey a minimum of 100 meters with 200 meters preferred of stream, preferably in an upstream direction starting above the bridge pool and the road right-of-way. The segment which is assessed should represent average stream conditions. To perform a proper habitat evaluation the observer needs to get into the stream. To complete the form, select the description which best fits the observed habitats and then circle the score. If the observed habitat falls in between two descriptions, select an intermediate score. A final habitat score is determined by adding the results from the different metrics. Stream Lum Mu(N Location/road: Ma) or Hill (Road Name Ma) or Hill) County Alam UNCE CC# (303000) Basin Cape Reg Subbasin 03-06-04 Date 190613 Observer(s) P.A.S. Type of Study: Dish Denthos Denthos Describe Describe Describe Latitude 35. 855 975 Longitude 79. 395 705 Ecoregion: \square MT \square P \square Slate Belt \square Triassic Basin Water Quality: Temperature ⁰C DO mg/l Conductivity (corr.) μS/cm Physical Characterization: Visible land use refers to immediate area that you can see from sampling location - include what you estimate driving thru the watershed in watershed land use. le Land Use: 30 %Forest %Residential 30 %Active Pasture % Active Crops %Fallow Fields %Commercial %Industrial 56 %Other - Describe: m+15alva 116/Bulle-Visible Land Use: Watershed land use: XForest XAgriculture Urban Animal operations upstream Channel (at top of bank) Stream Depth: (m) Avg Amax Width: (meters) Stream ☐ Width variable ☐ Large river >25m wide Bank Height (from deepest part of riffle to top of bank-first flat surface you stand on); (m) Bank Angle: 60 ° or □ NA (Vertical is 90°, horizontal is 0°. Angles > 90° indicate slope is towards mid-channel, < 90° indicate slope is away from channel. NA if bank is too low for bank angle to matter.) ☐ Channelized Ditch Deeply incised-steep, straight banks DBoth banks undercut at bend □Channel filled in with sediment ☐ Recent overbank deposits ☐Bar development ☐Buried structures □Exposed bedrock ☐ Excessive periphyton growth ☐ Heavy filamentous algae growth ☐Green tinge ☐ Sewage smell Manmade Stabilization: ☐N ☐Y: ☐Rip-rap, cement, gabions ☐ Sediment/grade-control structure ☐Berm/levee Flow conditions: DHigh DNormal DLow Turbidity: □Clear □ Slightly Turbid □Turbid □Tannic □Milky □Colored (from dyes) Good potential for Wetlands Restoration Project?? XYES NO Details Strain woland missalungito YR-**Channel Flow Status** Useful especially under abnormal or low flow conditions. A. Water reaches base of both lower banks, minimal channel substrate exposed B. Water fills >75% of available channel, or <25% of channel substrate is exposed..... C. Water fills 25-75% of available channel, many logs/snags exposed..... D. Root mats out of water..... E. Very little water in channel, mostly present as standing pools.... Weather Conditions: Cool - Cloudy Photos: DN Digital D35mm

Rainfall above average prior to sampling

			L	umm_1	Maju
I. Channel Modification					Score
A: channel natural, frequent bends				***********	(5)
B. channel natural, infrequent bends (channel	ization cou	ld be old)			4
C. some channelization present	************			************	3
D. more extensive channelization, >40% of st					2
E. no bends, completely channelized or rip ra					0
☐ Evidence of dredging ☐ Evidence of desnagging=no lar	ge woody d	lebris in stream [Banks of unifo	rm shape/h	eight
Remarks restanded very				Su	btotal \(\)
II. Instream Habitat: Consider the percentage of the reach reach is rocks, 1 type is present, circle the score of 17. Defibegun to decay (not piles of leaves in pool areas). Mark as A Rocks Macrophytes Sticks and leafpace	inition: lea	fpacks consist of common, or Abundan	older leaves that t.	are packed	together and have
AMOUNT OF REACH FAVO					iiats
AMOUNT OF REACH FAVO	>70%	40-70%	20-40%	<20%	
	Score	Score	Score	Score	
4 or 5 types present	20	(16)	12	8	
3 types present	19	15	11	7	
2 types present	18	14	10	6	
1 type present		13	9	5	
No types present					1
☐ No woody vegetation in riparian zone Remarks					Subtotal 16
1. embeddedness <20% (very little sand, 2. embeddedness 20-40%					125 8 3 14 11 6 2 8 4
D. substrate homogeneous					
substrate nearly all bedrock					3
2. substrate nearly all sand					3
3. substrate nearly all detritus					2
4. substrate nearly all silt/ clay			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1111
Remarks				Su	btotal (A
IV. Pool Variety Pools are areas of deeper than average associated with pools are always slow. Pools may take the large high gradient streams, or side eddies. A. Pools present 1. Pools Frequent (>30% of 200m area surveyed) a. variety of pool sizes	form of "p	ocket water", sma	ll pools behind l	boulders or	Score
b. pools about the same size (indicates p		in)		,1010101010	8
2. Pools Infrequent (<30% of the 200m area surv					
a. variety of pool sizes					6
b. pools about the same size					4

Remarks

Definition: Riffle is area of reaeration-can be debris dam, or narrow channel area. Riffles Frequer Scor A. well defined riffle and run, riffle as wide as stream and extends 2X width of stream B. riffle as wide as stream but riffle length is not 2X stream width		nfrequent
D. riffles absent. 0 Channel Slope: ☐Typical for area ☐Steep=fast flow ☐Low=like a coastal stream	Sub	total 16
VI. Bank Stability and Vegetation		
FACE UPSTREAM	Left Bank	Rt. Bank
	<u>Score</u>	Score
A. Banks stable 1. little evidence of erosion or bank failure(except outside of bends), little potential for erosi B. Erosion areas present		Ø
1. diverse trees, shrubs, grass; plants healthy with good root systems		6
2. few trees or small trees and shrubs; vegetation appears generally healthy		5 3
3. sparse mixed vegetation; plant types and conditions suggest poorer soil binding		2
4. mostly grasses, few if any trees and shrubs, high erosion and failure potential at high flow		0 6
5. little or no bank vegetation, mass erosion and bank failure evident		otal 14
Remarks	1	otal /
VII. Light Penetration Canopy is defined as tree or vegetative cover directly above the stream's sursunlight when the sun is directly overhead. Note shading from mountains, but not use to score the A. Stream with good canopy with some breaks for light penetration. B. Stream with full canopy - breaks for light penetration absent. C. Stream with partial canopy - sunlight and shading are essentially equal. D. Stream with minimal canopy - full sun in all but a few areas. E. No canopy and no shading.	is metric.	would block out Score 10 85 7 2 0
		1
Remarks		Subtotal 💍
VIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyond in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly e		
down to stream, storm drains, uprooted trees, otter slides, etc.	7.0. D1.	D4 David
FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc)	Lft. Bank	Rt. Bank
A. Riparian zone intact (no breaks)	Score	Claama
A. Riparian zone intact (no oreaks)		Score
1. width > 18 meters	5	Score 5
1. width > 18 meters	<u>5</u>	Score 5
1. width > 18 meters	5 3	Score $\frac{5}{4}$
1. width > 18 meters	5 3 2	Score 5 4 3 2
1. width > 18 meters	5 3 2	Score 5 4 3 2
1. width > 18 meters	5 3 2	5 4 3 2
1. width > 18 meters	5 3 2 4 3	Score 5 4 3 2 4 3
1. width > 18 meters	5 3 2 4 3 2	5 4 3 2
1. width > 18 meters		5 4 3 2 4 3
1. width > 18 meters	2	5 4 3 2 4 3
1. width > 18 meters 2. width 12-18 meters 3. width 6-12 meters 4. width < 6 meters B. Riparian zone not intact (breaks) 1. breaks rare a. width > 18 meters b. width 12-18 meters c. width 6-12 meters d. width < 6 meters 2. breaks common a. width > 18 meters	2 1 3	5 4 3 2 4 3
1. width > 18 meters 2. width 12-18 meters 3. width 6-12 meters 4. width < 6 meters B. Riparian zone not intact (breaks) 1. breaks rare a. width > 18 meters b. width 12-18 meters c. width 6-12 meters d. width < 6 meters 2. breaks common a. width > 18 meters b. width 12-18 meters b. width 12-18 meters	2	5 4 3 2 4 3
1. width > 18 meters 2. width 12-18 meters 3. width 6-12 meters 4. width < 6 meters B. Riparian zone not intact (breaks) 1. breaks rare a. width > 18 meters b. width 12-18 meters c. width 6-12 meters d. width < 6 meters 2. breaks common a. width > 18 meters b. width 12-18 meters c. width 6-12 meters	2 1 3 2 1	5 4 3 2 4 3
1. width > 18 meters 2. width 12-18 meters 3. width 6-12 meters 4. width < 6 meters B. Riparian zone not intact (breaks) 1. breaks rare a. width > 18 meters b. width 12-18 meters c. width 6-12 meters d. width < 6 meters 2. breaks common a. width > 18 meters b. width 12-18 meters c. width 6-12 meters d. width > 18 meters c. width 6-12 meters d. width < 6 meters c. width 6-12 meters d. width < 6 meters	2 1 3 2 1 0	5 4 3 2 4 3 2 1 3 2 1 0
1. width > 18 meters 2. width 12-18 meters 3. width 6-12 meters 4. width < 6 meters B. Riparian zone not intact (breaks) 1. breaks rare a. width > 18 meters b. width 12-18 meters c. width 6-12 meters d. width < 6 meters 2. breaks common a. width > 18 meters b. width 12-18 meters c. width 6-12 meters	2 1 3 2 1 0	5 4 3 2 4 3 2 1 3 2 1 0 0 0 1

3/06 Revision 6

Biological Assessment Unit, DWQ

Lamm 47-1

Habitat Assessment Field Data Sheet Mountain/ Piedmont Streams

Directions for use: The observer is to survey a minimum of 100 meters with 200 meters preferred of stream, preferably in an

TOTAL SCORE

upstream direction starting above the bridge pool and the road right-of-way. The segment which is assessed should represent average stream conditions. To perform a proper habitat evaluation the observer needs to get into the stream. To complete the form, select the
description which best fits the observed habitats and then circle the score. If the observed habitat falls in between two descriptions,
select an intermediate score. A final habitat score is determined by adding the results from the different metrics.
Stream Lumin UT-1 Location/road: Majo-Hill (Road Name Majo-Hill) County Hamune
Date 190613 CC#0303000 Basin Cape Feq- Subbasin 03-06-04
Observer(s) P.P. A.5. Type of Study: Fish Benthos Basinwide Special Study (Describe)
Latitude 35.851/69 Longitude 79.392 & Ecoregion: DMT DP Slate Belt DTriassic Basin
Water Quality: Temperature0C DOmg/l Conductivity (corr.)µS/cm pH
Physical Characterization: Visible land use refers to immediate area that you can see from sampling location - include what you estimate driving thru the watershed in watershed land use.
Visible Land Use: 70 %Forest %Residential 70 %Active Pasture %Active Crops %Fallow Fields %Commercial %Industrial 70 %Other - Describe: 91-enm and puffer restoration
Watershed land use: □Forest □Agriculture □Urban □ Animal operations upstream
Width: (meters) Stream Channel (at top of bank) Stream Depth: (m) Avg Max Max Max
Bank Height (from deepest part of riffle to top of bank-first flat surface you stand on): (m)
Bank Angle: 60 or □ NA (Vertical is 90°, horizontal is 0°. Angles > 90° indicate slope is towards mid-channel, < 90° indicate slope is away from channel. NA if bank is too low for bank angle to matter.) □ Channelized Ditch
□Deeply incised-steep, straight banks □Both banks undercut at bend □Channel filled in with sediment
Recent overbank deposits Bar development Buried structures Franced bedrock
□ Excessive periphyton growth □ Heavy filamentous algae growth □ Green tinge □ Sewage smell Manmade Stabilization: □ N □ U: □ Rip-rap, cement, gabions □ Sediment/grade-control structure □ Berm/levee
Flow conditions: High Mormal Low Low
Turbidity: DClear VSlightly Turbid DTurbid DTannic DMilky DColored (from dyes)
Good potential for Wetlands Restoration Project?? A YES DNO Details wettend 1917 for
Channel Flow Status
Useful especially under abnormal or low flow conditions.
A. Water reaches base of both lower banks, minimal channel substrate exposed
C. Water fills 25-75% of available channel, many logs/snags exposed
D. Root mats out of water
E. Very little water in channel, mostly present as standing pools
Weather Conditions:(vol-LloudyPhotos: □N □Y □ Digital □35mm
Remarks: face Lell above querage

I. Channel Modification				Score
A. channel natural, frequent bends				
B. channel natural, infrequent bends (channeli				
C. some channelization present				3
D. more extensive channelization, >40% of st				
E. no bends, completely channelized or rip rap				
☐ Evidence of dredging ☐ Evidence of desnagging=no large	ge woody d	ebris in stream	Banks of unifo	
Remarks				Subtotal 5
II. Instream Habitat: Consider the percentage of the reach reach is rocks, 1 type is present, circle the score of 17. Defibegun to decay (not piles of leaves in pool areas). Mark as Rocks Macrophytes Sticks and leafpack	nition: leaf Rare, Com	packs consist of o mon, or Abundan	lder leaves that t.	are packed together and have
AMOUNT OF REACH FAVOR	DADIE E	DD COLONIZAT	TION OF COV	/ED
AMOUNT OF REACH FAVOR	>70%	40-70%	20-40%	<20%
A on 5 tumos museumt	Score 20	Score 16	Score 12	Score
4 or 5 types present		15		8
	18		11	7
2 types present		14	10 9	6 5
1 type present	17 0	13	9	5
No types present	U			Subtotal 19
☐ No woody vegetation in riparian zone Remarks_				Subtotal V
for embeddedness, and use rocks from all parts of riffle-loo A. substrate with good mix of gravel, cobble ar 1. embeddedness <20% (very little sand, 2. embeddedness 20-40%	nd boulders usually only	s y behind large bot	alders)	Score 15
IV. Pool Variety Pools are areas of deeper than average associated with pools are always slow. Pools may take the large high gradient streams, or side eddies. A. Pools present 1. Pools Frequent (>30% of 200m area surveyed) a. variety of pool sizes b. pools about the same size (indicates pools about the same size (indicates pools about the same size) b. pools about the same size b. pools about the same size B. Pools absent A Pool bottom boulder-cobble=hard Bottom sandy-sind	form of "po	n)	1 pools behind b	Score 10 8
Remarks				Page Total 44

Definition: Riffle is area of reaeration-can be debris dam, or narrow channel area. Riffles Frequence Scott A. well defined riffle and run, riffle as wide as stream and extends 2X width of stream B. riffle as wide as stream but riffle length is not 2X stream width		nfrequent
D. riffles absent	Sub	total 6
VI. Bank Stability and Vegetation		
FACE UPSTREAM	Left Bank	Rt. Bank
	Score	Score
A. Banks stable 1. little evidence of erosion or bank failure(except outside of bends), little potential for erosi B. Erosion areas present		1
1. diverse trees, shrubs, grass; plants healthy with good root systems		6
2. few trees or small trees and shrubs; vegetation appears generally healthy		5
3. sparse mixed vegetation; plant types and conditions suggest poorer soil binding		3 2
 mostly grasses, few if any trees and shrubs, high erosion and failure potential at high flow little or no bank vegetation, mass erosion and bank failure evident 		0 11)
5. Tittle of no bank vegetation, mass erosion and bank failure evident		otal [L]
Remarks	1	otai_ '
VII. Light Penetration Canopy is defined as tree or vegetative cover directly above the stream's sur sunlight when the sun is directly overhead. Note shading from mountains, but not use to score the A. Stream with good canopy with some breaks for light penetration. B. Stream with full canopy - breaks for light penetration absent. C. Stream with partial canopy - sunlight and shading are essentially equal. D. Stream with minimal canopy - full sun in all but a few areas. E. No canopy and no shading.	is metric.	would block out Score (10) 8 7 2 0
		10
Remarks		Subtotal U
VIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyone in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly edown to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM	l floodplain). nter the strea Lft. Bank	Definition: A break m, such as paths Rt. Bank
Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc)	Score	Score
A. Riparian zone intact (no breaks)		
1. width > 18 meters	5	5
2. width 12-18 meters	4)	(4)
3. width 6-12 meters	3	3
4. width < 6 meters	2	2
B. Riparian zone not intact (breaks) 1. breaks rare		
a. width > 18 meters		
1 114 40 40	4	4
b. width 12-18 meters	4 3	3
c. width 6-12 meters	2	•
c. width 6-12 metersd. width < 6 meters		3
c. width 6-12 metersd. width < 6 meters	2 1	3
c. width 6-12 meters	2 1 3	3
c. width 6-12 meters	2 1	3
c. width 6-12 meters	2 1 3 2 1	3
c. width 6-12 meters	2 1 3 2 1 0	3 2 1 3 2 1 0 £
c. width 6-12 meters	2 1 3 2 1 0	3

3/06 Revision 6

Habitat Assessment Field Data Sheet

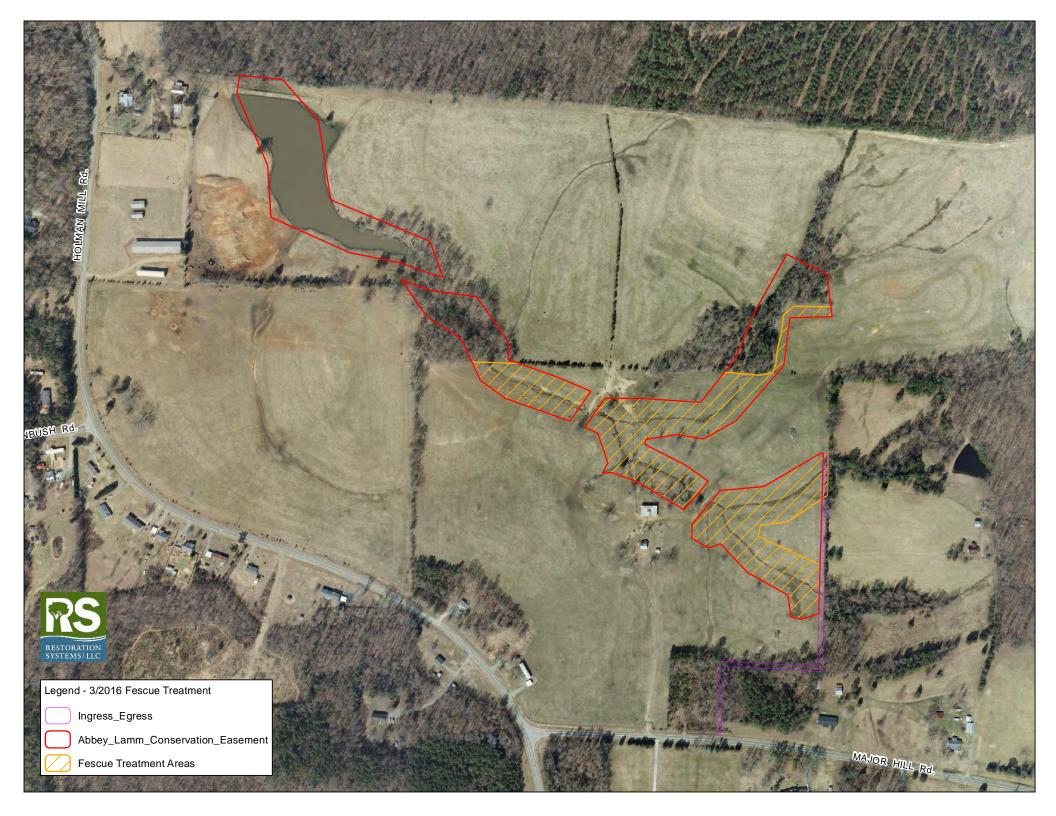
upstream direction starting above the bridge pool and the road right-of-way. The segment which is assessed should represent average stream conditions. To perform a proper habitat evaluation the observer needs to get into the stream. To complete the form, select the

Lamm 4T-2

Mountain/ Piedmont Streams **Biological Assessment Unit, DWQ**

Directions for use: The observer is to survey a minimum of 100 meters with 200 meters preferred of stream, preferably in an

description which best fits the observed habitats and then circle the score. If the observed habitat falls in between two descriptions, select an intermediate score. A final habitat score is determined by adding the results from the different metrics. Stream Lamy UT-2 Location/road: Me) or Hill (Road Name Mu) or Hill) County Alamque Date 190613 CC# 03030002 Basin Cape Fear Subbasin 03-06-04 Observer(s) Pl AS. Type of Study:


| Fish | Benthos | Basinwide | Special Study (Describe) | Latitude 35,947736 Longitude 79,39227 Ecoregion: □MT P □ Slate Belt □ Triassic Basin Water Quality: Temperature_____0C DO____mg/l Conductivity (corr.) _____µS/cm pH_ Physical Characterization: Visible land use refers to immediate area that you can see from sampling location - include what you estimate driving thru the watershed in watershed land use. Visible Land Use: 30 %Forest %Residential 70 %Active Pasture % Active Crops %Fallow Fields %Commercial %Industrial %Other - Describe: Watershed land use: Forest Agriculture Urban Animal operations upstream Width: (meters) Stream & Channel (at top of bank) 5 Stream Depth: (m) Avg / Max 5 ☐ Width variable ☐ Large river >25m wide Bank Height (from deepest part of riffle to top of bank-first flat surface you stand on); (m) Bank Angle: _____ ° or □ NA (Vertical is 90°, horizontal is 0°. Angles > 90° indicate slope is towards mid-channel, < 90° indicate slope is away from channel. NA if bank is too low for bank angle to matter.) ☐ Channelized Ditch Deeply incised-steep, straight banks DBoth banks undercut at bend □Channel filled in with sediment ☐ Recent overbank deposits ☐Bar development ☐Buried structures □Exposed bedrock ☐ Excessive periphyton growth ☐ Heavy filamentous algae growth ☐ Green tinge Manmade Stabilization: □N □Y: □Rip-rap, cement, gabions □ Sediment/grade-control structure □Berm/levee Flow conditions: DHigh DNormal DLow Turbidity: □Clear □ Slightly Turbid □Turbid □Tannic □Milky □Colored (from dyes) Good potential for Wetlands Restoration Project?? YES INO Details Steam on the Contract Contr **Channel Flow Status** Useful especially under abnormal or low flow conditions. A. Water reaches base of both lower banks, minimal channel substrate exposed B. Water fills >75% of available channel, or <25% of channel substrate is exposed..... C. Water fills 25-75% of available channel, many logs/snags exposed..... D. Root mats out of water.... E. Very little water in channel, mostly present as standing pools..... Weather Conditions: Cool Cleo _____Photos: □N □Y □ Digital □35mm variall has been above average prior Lo henthic

I. Channel Modification				Score
A. channel natural, frequent bends				
B. channel natural, infrequent bends (channelis				4
C. some channelization present		***************************************		3
D. more extensive channelization, >40% of str	ream disru	ipted	*******************	2
E. no bends, completely channelized or rip rap	ped or ga	bioned, etc		0
☐ Evidence of dredging ☐ Evidence of desnagging=no large	ge woody	debris in stream	☐Banks of unifo	orm shape/height
Remarks				Subtotal 7
II. Instream Habitat: Consider the percentage of the reach reach is rocks, 1 type is present, circle the score of 17. Defin begun to decay (not piles of leaves in pool areas). Mark as	nition: le	afpacks consist o	f older leaves that	or fish cover. If >70% of the are packed together and have
RocksMacrophytes \Sticks and leafpack	s <u> </u>	nags and logs	Undercut ban	ks or root mats
AMOUNT OF REACH FAVOR	RABLE I	OR COLONIZ	ATION OR COV	YER
	>70%	40-70%	20-40%	<20%
	Score	Score	Score	Score
4 or 5 types present	20	16	12	8
3 types present	19	15	11	7
2 types present	18	<u>(13</u>)	10	6
1 type present	17	13	9	5
No types present	0	1.0		1-1
□ No woody vegetation in riparian zone Remarks_				Subtotal
III. Bottom Substrate (silt, sand, detritus, gravel, cobble for embeddedness, and use rocks from all parts of riffle-loo				
A. substrate with good mix of gravel, cobble an	id boulde	ers		<u>Score</u>
1. embeddedness <20% (very little sand,	usually or	nly behind large b	ooulders)	
2. embeddedness 20-40%				(2)
3. embeddedness 40-80%		*************************		8
4. embeddedness >80%				3
B. substrate gravel and cobble				
1. embeddedness <20%				14
2. embeddedness 20-40%				
3. embeddedness 40-80%				
4. embeddedness >80%				_
C. substrate mostly gravel				
1. embeddedness < 50%				8
2. embeddedness >50%				
D. substrate homogeneous				
substrate nearly all bedrock				3
2. substrate nearly all sand				
3. substrate nearly all detritus				
4. substrate nearly all silt/ clay				
Remarks				Subtotal &
IV. Pool Variety Pools are areas of deeper than average associated with pools are always slow. Pools may take the large high gradient streams, or side eddies.	maximur form of "	n depths with litt pocket water", sn	le or no surface tu nall pools behind	rbulence. Water velocities boulders or obstructions, in
A. Pools present				Score
1. Pools Frequent (>30% of 200m area surveyed) a. variety of pool sizes				(10)
b. pools about the same size (indicates po				
		5 ±11/		
2. Pools Infrequent (<30% of the 200m area surve	yeuj			6
a. variety of pool sizes				
b. pools about the same size				
B. Pools absent				Subtotal ()
	l	11. 🗂 (234-3	III Come no -1:	Duotouit
☐ Pool bottom boulder-cobble=hard ☐ Bottom sandy-sind	k as you v	vaik Li Siit botto	m 🗀 Some poors	over wader depin
Remarks				Page 7-40
				Page Total_W

Definition: Riffle is area of reaeration-can be debris dam, or narrow channel area. Riffles Frequen		nfrequent
A. well defined riffle and run, riffle as wide as stream and extends 2X width of stream (16')	12	
B. riffle as wide as stream but riffle length is not 2X stream width	7	
C. riffle not as wide as stream and riffle length is not 2X stream width	3	
D. riffles absent. 0		10
Channel Slope: □Typical for area □Steep=fast flow □Low=like a coastal stream	Sub	total 16
VI. Bank Stability and Vegetation		
FACE UPSTREAM	Left Bank <u>Score</u>	Rt. Bank Score
A. Banks stable	6 0	(3)
 little evidence of erosion or bank failure(except outside of bends), little potential for erosic Erosion areas present 	n(//	\mathcal{O}
1. diverse trees, shrubs, grass; plants healthy with good root systems	6	6
2. few trees or small trees and shrubs; vegetation appears generally healthy		5
3. sparse mixed vegetation; plant types and conditions suggest poorer soil binding		3
4. mostly grasses, few if any trees and shrubs, high erosion and failure potential at high flow		2
5. little or no bank vegetation, mass erosion and bank failure evident		01/1
		otal [
Remarks		
VII. Light Penetration Canopy is defined as tree or vegetative cover directly above the stream's surfigurable sunlight when the sun is directly overhead. Note shading from mountains, but not use to score this		_
		Score
A. Stream with good canopy with some breaks for light penetration		(10)
B. Stream with full canopy - breaks for light penetration absent		8
C. Stream with partial canopy - sunlight and shading are essentially equal D. Stream with minimal canopy - full sun in all but a few areas	******	7 2
E. No canopy and no shading.		0
E. No canopy and no snading.	********	10
Remarks		Subtotal LO
VIII. Riparian Vegetative Zone Width		
Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyond in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly endown to stream, storm drains, uprooted trees, otter slides, etc.	nter the strea	m, such as paths
in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly endown to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM	ter the strea	m, such as paths Rt. Bank
in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly endown to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees GShrubs Grasses Weeds/old field Exotics (kudzu, etc)	nter the strea	m, such as paths
in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly endown to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks)	ter the strea	m, such as paths Rt. Bank
in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly endown to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters.	ter the strea	m, such as paths Rt. Bank
in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly endown to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters	ter the strea	Rt. Bank Score
in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly endown to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters	ter the strea	m, such as paths Rt. Bank
in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly endown to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters	ter the strea	Rt. Bank Score
in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly endown to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters	ter the strea	Rt. Bank Score
in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly endown to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters	Lft. Bank Score	Rt. Bank Score 5 3 2
in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly endown to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters. 2. width 12-18 meters. 3. width 6-12 meters. 4. width < 6 meters. B. Riparian zone not intact (breaks) 1. breaks rare a. width > 18 meters.	Lft. Bank Score 5 3 2	Rt. Bank Score 5 3 2
in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly endown to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters	Lft. Bank Score 5 3 2	Rt. Bank Score 5 3 2
in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly endown to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters. 2. width 12-18 meters. 3. width 6-12 meters. 4. width < 6 meters. B. Riparian zone not intact (breaks) 1. breaks rare a. width > 18 meters. b. width 12-18 meters. c. width 6-12 meters.	Lft. Bank Score 5 3 2	Rt. Bank Score 5 3 2
in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly endown to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters. 2. width 12-18 meters. 3. width 6-12 meters. 4. width < 6 meters. B. Riparian zone not intact (breaks) 1. breaks rare a. width > 18 meters. b. width 12-18 meters.	Lft. Bank Score 5 3 2	Rt. Bank Score 5 3 2
in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly endown to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters. 2. width 12-18 meters. 3. width 6-12 meters. 4. width < 6 meters. B. Riparian zone not intact (breaks) 1. breaks rare a. width > 18 meters. b. width 12-18 meters. c. width 6-12 meters. d. width < 6 meters.	Lft. Bank Score 5 3 2	Rt. Bank Score 5 3 2
in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly endown to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters. 2. width 12-18 meters. 3. width 6-12 meters. 4. width < 6 meters. B. Riparian zone not intact (breaks) 1. breaks rare a. width > 18 meters. b. width 12-18 meters. c. width 6-12 meters. d. width < 6 meters.	Lft. Bank Score 5 3 2 4 3 2 1	Rt. Bank Score 5 3 2
in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly endown to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters	Lft. Bank Score 5 3 2 4 3 2 1	Rt. Bank Score 5 3 2
in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly endown to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters	Lft. Bank Score 5 3 2 4 3 2 1	Rt. Bank Score 5 3 2
in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly endown to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters. 2. width 12-18 meters. 3. width 6-12 meters. 4. width < 6 meters. B. Riparian zone not intact (breaks) 1. breaks rare a. width > 18 meters. b. width 12-18 meters. c. width 6-12 meters. d. width < 6 meters. 2. breaks common a. width > 18 meters. b. width 12-18 meters. c. width 6-12 meters.	Lft. Bank Score 5 3 2 4 3 2 1	Rt. Bank Score 5 3 2
in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly endown to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters. 2. width 12-18 meters. 4. width < 6 meters. B. Riparian zone not intact (breaks) 1. breaks rare a. width > 18 meters. b. width 12-18 meters. c. width 6-12 meters. d. width < 6 meters. 2. breaks common a. width > 18 meters. b. width 12-18 meters. c. width 6-12 meters. d. width < 6 meters. b. width 12-18 meters. c. width 6-12 meters. d. width < 6 meters. d. width < 6 meters.	Lft. Bank Score 5 3 2 4 3 2 1	Rt. Bank Score 5 3 2 4 3 2 1 3 2 1 Cotal

APPENDIX G MISCELLANEOUS

Figure-March 2016 Fescue Treatment 2016 Herbicide Application Forms Supplemental Photographs Remedial Planting Plan Figure 2016 Replant Photos Herbicide Application Forms

Carolina Silvics, Inc. Pesticide Application Log

CarSilv - 0163

Client	Restor	ation Systems			
Project Site	Abbey	Lamm			
Date	03-11-	2016			
Start Time	8:00		End Time	15:30	
Only PAL for Site for This Day?		Yes	If NO, this is PAL # of ##		
Sky Cover	Partly (Cloudy	Temp (F)	70	
Wind Direction	Е		Wind Speed	Calm	
Applicators	William A Skinner (NC 026-32003/VA 129456)				
Application Method	Foliar S	Spray (ATV - Broadcast)			
Herbicide	Oust®	XP (sulfometuron methyl)			
Herbicide Rate (%)			Total Concentrate	30oz	
Surfactant or Adjuvant (1)					
Surfactant/Adjudivant 1 Rate (%)					
Other		Grounded (deposition age	ent)		
Other Rate/Amt	8oz/ac				
Diluent	Water				
Total Solution	125 ga	llon			
Species Controlled	fescue				
Species Controlled Area Description	fescue				

Photo 1: Downstream end of the Main Stem looking upstream into the old pond bed

Photo 2: Downstream end of the Main Stem looking upstream into the old pond bed

Photo 3: Downstream end of the Main Stem looking upstream into the old pond bed

Photo 4: Upstream end of the old pond looking downstream

Photo 5: middle crossing looking upstream at the Main Stem and UT-3 on the left

Photo 6: middle crossing looking upstream at the Main Stem and UT-3 on the left

Abbey Lamm Stream & Wetland Mitigation Site: Year 2 (2016) Photos

Photo 7: UT 1 & UT-2 Photo Date: 10-19-2016

Abbey Lamm Stream & Wetland Mitigation Site: Year 2 (2016) Photos

Photo 8: UT 3 (XC 5, 6, 7)

Photo Date: 10-19-2016

Abbey Lamm Stream & Wetland Mitigation Site: Year 2 (2016) Photos

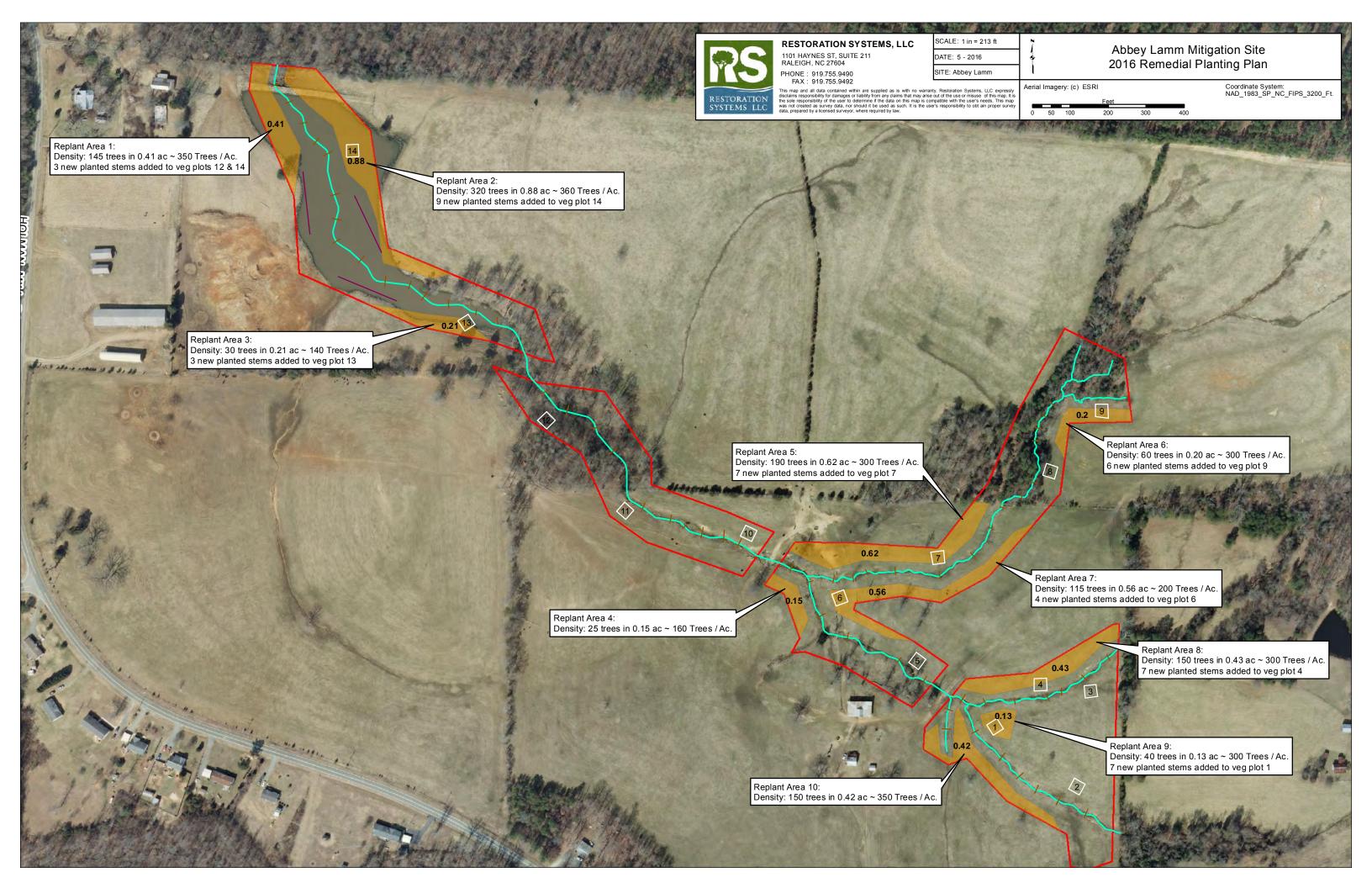


Photo 9: UT 3 (XC 6, 7, 8)

Photo Date: 10-19-2016

Photo 10: UT-1, 2, 3, & Main Stem

ABBEY LAMM STREAM AND WETLAND MITIGATION SITE

ALAMANCE COUNTY, NORTH CAROLINA FULL DELIVERY CONTRACT NO. 5790

Photographs taken January 13th, 2017

Photo 1: Looking S. along Replant Area -1

Photo 2: Looking N. in Replant Area 2, just N. of veg. plot 14

Photo 3: Looking W. in Replant Area 3, near veg. plot 13

Photo 4: Looking NE. in Replant Area 5, near veg. plot 7

Photo 5: Looking N. in Replant Area 6.

Photo 6: Looking N. in Replant Area 6, towards veg. plot 9.

Photo 7: Looking SW. in Replant Area 8.

Photo 8: Looking NW. in Replant Area 10.

Photo 9: Surviving bear roots outside of replant area

Photo 10: Surviving bear root outside of replant area

Carolina Silvics, Inc. Pesticide Application Log

Carolina Silvics, Inc.

Unique ID

CarSilv - 0713

Client

Restoration Systems

Project Site

Abbey Lamm

Date

Tuesday, June 18, 2019

Start Time

9:00

End Time

13:00

Only PAL for Site for This Day?

Yes

Sky Cover

Clear

Temp (F)

85

Wind Direction

ENE

Wind Speed

1-5 mph

Applicators

Joshua G Merritt (NC 026-33717)

Grainger Coughtrey (NC 026-34612)

Application Method

Foliar Spray (Backpack)

Herbicide

Roundup® Custom (glyphosate)

Herbicide Rate (%)

.25

Total Concentrate

3.2 fl oz

Surfactant or Adjuvant (1)

Agri-Dex®

Surfactant/Adjudivant 1 Rate (%)

.75

Diluent

Water

Total Solution

10 gallons

Species Controlled

Microstegium

Area Description

Treated microstegium within the old pond. Microstegium densities were high within this area.

